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Abstract—Monaural source separation is important for many
real world applications. It is challenging because, with only a
single channel of information available, without any constraints,
an infinite number of solutions are possible. In this paper,
we explore joint optimization of masking functions and deep
recurrent neural networks for monaural source separation tasks,
including monaural speech separation, monaural singing voice
separation, and speech denoising. The joint optimization of the
deep recurrent neural networks with an extra masking layer
enforces a reconstruction constraint. Moreover, we explore a
discriminative criterion for training neural networks to further
enhance the separation performance. We evaluate the proposed
system on the TSP, MIR-1K, and TIMIT datasets for speech
separation, singing voice separation, and speech denoising tasks,
respectively. Our approaches achieve 2.30–4.98 dB SDR gain
compared to NMF models in the speech separation task, 2.30–
2.48 dB GNSDR gain and 4.32–5.42 dB GSIR gain compared
to existing models in the singing voice separation task, and
outperform NMF and DNN baselines in the speech denoising
task.

Index Terms—Monaural Source Separation, Time-Frequency
Masking, Deep Recurrent Neural Network, Discriminative Train-
ing

I. INTRODUCTION

SOURCE separation is a problem in which several sig-
nals have been mixed together and the objective is to

recover the original signals from the combined signals. Source
separation is important for several real-world applications.
For example, the accuracy of chord recognition and pitch
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estimation can be improved by separating the singing voice
from the music accompaniment [1]. The accuracy of automatic
speech recognition (ASR) can be improved by separating
speech signals from noise [2]. Monaural source separation, i.e.,
source separation from monaural recordings, is particularly
challenging because, without prior knowledge, there is an
infinite number of solutions. In this paper, we focus on
source separation from monaural recordings with applications
to speech separation, singing voice separation, and speech
denoising tasks.

Several approaches have been proposed to address the
monaural source separation problem. We categorize them into
domain-specific and domain-agnostic approaches. For domain-
specific approaches, models are designed according to the
prior knowledge and assumptions of the tasks. For example, in
singing voice separation tasks, several approaches have been
proposed to exploit the assumption of the low rank and sparsity
of the music and speech signals, respectively [1], [3]–[5]. In
speech denoising tasks, spectral subtraction [6] subtracts a
short-term noise spectrum estimate to generate the spectrum
of a clean speech. By assuming the underlying properties of
speech and noise, statistical model-based methods infer speech
spectral coefficients given noisy observations [7]. However, in
real-world scenarios, these strong assumptions may not always
hold. For example, in the singing voice separation task, the
drum sounds may lie in sparse subspaces instead of being low
rank. In speech denoising tasks, the models often fail to predict
the acoustic environments due to the non-stationary nature of
noise.

For domain-agnostic approaches, models are learned from
data directly without having any prior assumption in the task
domain. Non-negative matrix factorization (NMF) [8] and
probabilistic latent semantic indexing (PLSI) [9], [10] learn
the non-negative reconstruction bases and weights of different
sources and use them to factorize time-frequency spectral
representations. NMF and PLSI can be viewed as a linear
transformation of the given mixture features (e.g. magnitude
spectra) during the prediction time. However, based on the
minimum mean squared error (MMSE) estimate criterion, the
optimal estimator E[Y|X] is a linear model in X only if X and
Y are jointly Gaussian, where X and Y are the mixture and
separated signals, respectively. In real-world scenarios, since
signals might not always follow Gaussian distributions, linear
models are not expressive enough to model the complicated
relationship between separated and mixture signals. We con-
sider the mapping relationship between the mixture signals
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and separated sources as a nonlinear transformation, and hence
nonlinear models such as deep neural networks (DNNs) are
desirable.

In this paper, we propose a general monaural source sepa-
ration framework to jointly model all sources within a mixture
as targets to a deep recurrent neural network (DRNN). We pro-
pose to utilize the constraints between the original mixture and
the output predictions through time-frequency mask functions
and jointly optimize the time-frequency functions along with
the deep recurrent neural network. Given a mixture signal,
the proposed approach directly reconstructs the predictions
of target sources in an end-to-end fashion. In addition, given
that there are predicted results of competing sources in the
output layer, we further propose a discriminative training
criterion for enhancing the source to interference ratio. We
extend our previous work in [11] and [12] and propose a
general framework for monaural source separation tasks with
applications to speech separation, singing voice separation, and
speech denoising. We further extend our speech separation
experiments in [11] to a larger speech corpus, the TSP
dataset [13], with different model architectures and different
speaker genders, and we extend our proposed framework to
speech denoising tasks under various matched and mismatched
conditions.

The organization of this paper is as follows: Section II
reviews and compares recent monaural source separation work
based on deep learning models. Section III introduces the
proposed methods, including the deep recurrent neural net-
works, joint optimization of deep learning models and soft
time-frequency masking functions, and the training objectives.
Section IV presents the experimental setting and results using
the TSP [13], MIR-1K [14], and TIMIT [15] datasets for
speech separation, singing voice separation, and speech de-
noising tasks, respectively. We conclude the paper in Section
V.

II. RELATED WORK

Recently, deep learning based methods have started to
attract much attention in the source separation research com-
munity by modeling the nonlinear mapping relationship be-
tween mixture and separated signals. Prior work on deep
learning based source separation can be categorized into three
categories, depending on the interaction between input mixture
and output targets.

Denoising-based approaches: These methods utilize deep
learning based models to learn the mapping from the mixture
signals to one of the sources among the mixture signals. In the
speech recognition task, given noisy features, Maas et al. [2]
proposed to apply a DRNN to predict clean speech features.
In the speech enhancement task, Xu et al. [16] and Liu et
al. [17] proposed to use a DNN for predicting clean speech
signals given noisy speech signals. The denoising methods do
not consider the relationships between target and other sources
in the mixture, which is suboptimal in the source separation
framework where all the sources are important. In contrast,
our proposed model considers all sources in the mixture and
utilizes the relationship among the sources to formulate time-
frequency masks.

Time-frequency mask based approaches: A time-
frequency mask [18] considers the relationships among the
sources in a mixture signal, enforces the constraints between
an input mixture and the output predictions, and hence results
in smooth prediction results. Weninger et al. [19] trained
two long short-term memory (LSTM) RNNs for predicting
speech and noise, respectively. A final prediction is made by
applying a time-frequency mask based on the speech and noise
predictions. Instead of training a model for each source and
applying the time-frequency mask separately, our proposed
model jointly optimizes time-frequency masks with a network
which models all the sources directly.

Another type of approach is to apply deep learning models
to predict a time-frequency mask for one of the sources. After
the time-frequency mask is learned, the estimated source is ob-
tained by multiplying the learned time-frequency mask with an
input mixture. Nie et al. [20] utilized deep stacking networks
with time series inputs and a re-threshold method to predict an
ideal binary mask. Narayanan and Wang [21] and Wang and
Wang [22] proposed a two-stage framework (DNNs with a
one-layer perceptron and DNNs with an SVM) for predicting
a time-frequency mask. Wang et al. [23] recently proposed
to train deep neural networks for different targets, including
ideal ratio mask, FFT-mask, and Gammatone frequency power
spectrum for speech separation tasks. Our proposed approach
learns time-frequency masks for all the sources internally
with the DRNNs and directly optimizes separated results with
respect to ground truth signals in an end-to-end fashion.

Multiple-target based approaches: These methods model
all output sources in a mixture as deep learning model training
targets. Tu et al. [24] proposed modeling clean speech and
noise as the output targets for a robust ASR task. However, the
authors do not consider the constraint that the sum of all the
sources is the original mixture. Grais et al. [25] proposed using
a deep neural network to predict two scores corresponding to
the probabilities of two different sources respectively given
a frame of normalized magnitude spectrum. Our proposed
method also models all sources as training targets. We further
enforce the constraints between an input mixture and the
output predictions through time-frequency masks which are
learned along with DRNNs.

III. PROPOSED METHODS

A. Deep Recurrent Neural Networks

Given that audio signals are time series in nature, we
propose to model the temporal information using deep re-
current neural networks for monaural source separation tasks.
To capture the contextual information among audio signals,
one way is to concatenate neighboring audio features, e.g.,
magnitude spectra, together as input features to a deep neural
network. However, the number of neural network parameters
increases proportionally to the input dimension and the number
of neighbors in time. Hence, the size of the concatenating
window is limited. Another approach is to utilize recurrent
neural networks (RNNs) for modeling the temporal informa-
tion. An RNN can be considered as a DNN with indefinitely
many layers, which introduce the memory from previous time
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Fig. 1. Deep Recurrent Neural Network (DRNN) architectures: Arrows represent connection matrices. Black, white, and gray circles represent input frames,
hidden states, and output frames, respectively. The architecture in (a) is a standard recurrent neural network, (b) is an L hidden layer DRNN with recurrent
connection at the l-th layer (denoted by DRNN-l), and (c) is an L hidden layer DRNN with recurrent connections at all levels (denoted by stacked RNN).

steps, as shown in Figure 1 (a). The potential weakness for
RNNs is that RNNs lack hierarchical processing of the input
at the current time step. To further provide the hierarchical
information through multiple time scales, deep recurrent neural
networks (DRNNs) are explored [26], [27]. We formulate
DRNNs in two schemes as shown in Figure 1 (b) and Figure
1 (c). The Figure 1 (b) is an L hidden layer DRNN with
temporal connection at the l-th layer. The Figure 1 (c) is an
L hidden layer DRNN with full temporal connections (called
stacked RNN (sRNN) in [27]). Formally, we define the two
DRNN schemes as follows. Suppose there is an L hidden layer
DRNN with the recurrent connection at the l-th layer, the l-th
hidden activation at time t, hl

t, is defined as:

hl
t = fh(xt,h

l
t−1)

= φl
(
Ulhl

t−1 + Wlφl−1

(
Wl−1

(
. . . φ1

(
W1xt

))))
(1)

and the output yt is defined as:

yt = fo(hl
t)

= WLφL−1

(
WL−1

(
. . . φl

(
Wlhl

t

)))
(2)

where fh and fo are a state transition function and an output
function, respectively, xt is the input to the network at time t,
φl(·) is an element-wise nonlinear function at the l-th layer,
Wl is the weight matrix for the l-th layer, and Ul is the
weight matrix for the recurrent connection at the l-th layer.
The recurrent weight matrix Uk is a zero matrix for the rest
of the layers where k 6= l. The output layer is a linear layer.

The stacked RNNs, as shown in Figure 1 (c), have multiple
levels of transition functions, defined as:

hl
t = fh(hl−1

t ,hl
t−1)

= φl(U
lhl

t−1 + Wlhl−1
t ) (3)

where hl
t is the hidden state of the l-th layer at time t, φl(·) is

an element-wise nonlinear function at the l-th layer, Wl is the
weight matrix for the l-th layer, and Ul is the weight matrix
for the recurrent connection at the l-th layer. When the layer
l = 1, the hidden activation h1

t is computed using h0
t = xt.

For the nonlinear function φl(·), similar to [28], we empirically
found that using the rectified linear unit φl(x) = max(0,x)

performs better compared to using a sigmoid or tanh function
in our experiments. Note that a DNN can be regarded as a
DRNN with the temporal weight matrix Ul as a zero matrix.

For the computation complexity, given the same input
features, during the forward-propagation stage, a DRNN with
L hidden layers, m hidden units, and a temporal connection
at the l-th layer requires an extra Θ(m2) IEEE floating point
storage buffer to store the temporal weight matrix Ul, and
extra Θ(m2) multiply-add operations to compute the hidden
activations in Eq. (3) at the l-th layer, compared to a DNN
with L hidden layers and m hidden units. During the back-
propagation stage, DRNN uses back-propagation through time
(BPTT) [29], [30] to update network parameters. Given an
input sequence with T time steps in length, the DRNN with
an l-th layer temporal connection requires an extra Θ(Tm)
space to keep hidden activations in memory and requires
Θ(Tm2) operations (Θ(m2) operations per time step) for
updating parameters, compared to a DNN [31]. Indeed, the
only pragmatically significant computational cost of a DRNN
with respect to a DNN is that the recurrent layer limits the
granularity with which back-propagation can be parallelized.
As gradient updates based on sequential steps cannot be
computed in parallel, for improving the efficiency of DRNN
training, utterances are chopped into sequences of at most 100
time steps.

B. Model Architecture

We consider the setting where there are two sources addi-
tively mixed together, though our proposed framework can be
generalized to more than two sources. At time t, the training
input xt of the network is the concatenation of features, e.g.,
logmel features or magnitude spectra, from a mixture within
a window. The output targets y1t

∈ RF and y2t
∈ RF and

the output predictions ŷ1t
∈ RF and ŷ2t

∈ RF of the deep
learning models are the magnitude spectra of different sources,
where F is the magnitude spectral dimension.

Since our goal is to separate different sources from a
mixture, instead of learning one of the sources as the target,
we propose to simultaneously model all the sources. Figure 2
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Fig. 2. Proposed neural network architecture, which can be viewed as the t-th
column in Figure 1. We propose to jointly optimize time-frequency masking
functions as a layer with a deep recurrent neural network.

shows an example of the architecture, which can be viewed
as the t-th column in Figure 1.

Moreover, we find it useful to further smooth the source
separation results with a time-frequency masking technique,
for example, binary time-frequency masking or soft time-
frequency masking [1], [11], [18], [32]. The time-frequency
masking function enforces the constraint that the sum of the
prediction results is equal to the original mixture. Given the
input features xt from the mixture, we obtain the output
predictions ŷ1t

and ŷ2t
through the network. The soft time-

frequency mask mt ∈ RF is defined as follows:

mt =
|ŷ1t
|

|ŷ1t |+ |ŷ2t |
(4)

where the addition and division operators are element-wise
operations.

Similar to [19], a standard approach is to apply the time-
frequency masks mt and 1 − mt to the magnitude spectra
zt ∈ RF of the mixture signals, and obtain the estimated
separation spectra ŝ1t ∈ RF and ŝ2t ∈ RF , which correspond
to sources 1 and 2, as follows:

ŝ1t = mt � zt
ŝ2t = (1−mt)� zt

(5)

where the subtraction and � (Hadamard product) operators
are element-wise operations.

Given the benefit of smoothing separation and enforcing the
constraints between an input mixture and the output predic-
tions using time-frequency masks, we propose to incorporate
the time-frequency masking functions as a layer in the neural
network. Instead of training the neural network and applying
the time-frequency masks to the predictions separately, we
propose to jointly train the deep learning model with the time-

frequency masking functions. We add an extra layer to the
original output of the neural network as follows:

ỹ1t
=

|ŷ1t
|

|ŷ1t |+ |ŷ2t |
� zt

ỹ2t
=

|ŷ2t
|

|ŷ1t
|+ |ŷ2t

|
� zt

(6)

where the addition, division, and � (Hadamard product) oper-
ators are element-wise operations. The architecture is shown in
Figure 2. In this way, we can integrate the constraints into the
network and optimize the network with the masking functions
jointly. Note that although this extra layer is a deterministic
layer, the network weights are optimized for the error metric
between ỹ1t , ỹ2t and y1t , y2t , using the back-propagation
algorithm. The time domain signals are reconstructed based
on the inverse short-time Fourier transform (ISTFT) of the
estimated magnitude spectra along with the original mixture
phase spectra.

C. Training Objectives

Given the output predictions ỹ1t
and ỹ2t

(or ŷ1t
and ŷ2t

)
of the original sources y1t

and y2t
, t = 1, . . . , T , where T

is the length of an input sequence, we optimize the neural
network parameters by minimizing the squared error:

JMSE =
1

2

T∑
t=1

(
‖ỹ1t

− y1t
‖22 + ‖ỹ2t

− y2t
‖22
)

(7)

In Eq. (7), we measure the difference between the predicted
and the actual targets. When targets have similar spectra, it
is possible for the DNN to minimize Eq. (7) by being too
conservative: when a feature could be attributed to either
source 1 or source 2, the neural network attributes it to both.
The conservative strategy is effective in training, but leads
to reduced signal-to-interference ratio (SIR) in testing, as the
network allows ambiguous spectral features to bleed through
partially from one source to the other. We address this issue
by proposing a discriminative network training criterion for
reducing the interference, possibly at the cost of increased
artifacts. Suppose that we define

JDIS = −(1− γ) ln p12(y)− γDKL(p12‖p21) (8)

where 0 ≤ γ ≤ 1 is a regularization constant. p12(y) is the
likelihood of the training data under the assumption that the
neural net computes the MSE estimate of each feature vector
(i.e., its conditional expected value given knowledge of the
mixture), and that all residual noise is Gaussian with unit
covariance, thus

ln p12(y) = −1

2

T∑
t=1

(
‖y1t − ỹ1t‖2 + ‖y2t − ỹ2t‖2

)
(9)

The discriminative term, DKL(p12‖p21), is a point estimate of
the KL divergence between the likelihood model p12(y) and
the model p21(y), where the latter is computed by swapping
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(c) Recovered female voice
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Fig. 3. A speech separation example using the TSP dataset. (a) The mixture (female (FA) and male (MC) speech) magnitude spectrogram for a test clip in
TSP; (b) the ground truth spectrogram of the female speech; (c) the separated female speech spectrogram from our proposed model (DRNN-1 + discrim); (d)
the ground truth spectrogram of the male speech; (e) the separated male speech spectrogram from our proposed model (DRNN-1 + discrim).
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(e) Recovered music

Fig. 4. A singing voice separation example using the MIR-1K dataset. (a) The mixture (singing voice and music accompaniment) magnitude spectrogram
for the clip Yifen 2 07 in MIR-1K; (b) the ground truth spectrogram for the singing voice; (c) the separated signing voice spectrogram from our proposed
model (DRNN-2 + discrim); (d) the ground truth spectrogram for the music accompaniment; (e) the separated music accompaniment spectrogram from our
proposed model (DRNN-2 + discrim).
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Fig. 5. A speech denoising example using the TIMIT dataset. (a) The mixture (speech and babble noise) magnitude spectrogram for a test clip in TIMIT;
(b) the ground truth spectrogram for the speech; (c) the separated speech spectrogram from our proposed model (DNN); (d) the ground truth spectrogram for
the babble noise; (e) the separated babble noise spectrogram from our proposed model (DNN).

affiliation of spectra to sources, thus

DKL(p12‖p21) =
1

2

T∑
t=1

(
‖y1t

− ỹ2t
‖2 + ‖y2t

− ỹ1t
‖2−

‖y1t
− ỹ1t

‖2 − ‖y2t
− ỹ2t

‖2
)

(10)

Combining Eqs. (8)–(10) gives a discriminative criterion
with a simple and useful form:

JDIS =
1

2

T∑
t=1

(
‖y1t

− ỹ1t
‖2 + ‖y2t

− ỹ2t
‖2−

γ‖y1t
− ỹ2t

‖2 − γ‖y2t
− ỹ1t

‖2
)

(11)

Although Eq. (7) directly optimizes the reconstruction objec-
tive, adding the extra term −γ‖y1t

− ỹ2t
‖2 − γ‖y2t

− ỹ1t
‖2

in Eq. (11) further penalizes the interference from the other
source, and can be viewed as a regularizer of Eq. (7) during the
training. From our experimental results, we generally achieve
higher source to interference ratio while maintaining similar
or higher source to distortion ratio and source to artifacts ratio.

IV. EXPERIMENTS

In this section, we evaluate the proposed models on three
monaural source separation tasks: speech separation, singing

voice separation, and speech denoising. We quantitatively eval-
uate the source separation performance using three metrics:
Source to Interference Ratio (SIR), Source to Artifacts Ratio
(SAR), and Source to Distortion Ratio (SDR), according to the
BSS-EVAL metrics [33]. SDR is the ratio of the power of the
input signal to the power of the difference between input and
reconstructed signals. SDR is therefore exactly the same as
the classical measure “signal-to-noise ratio” (SNR), and SDR
reflects the overall separation performance. In addition to SDR,
SIR reports errors caused by failures to fully remove the in-
terfering signal, and SAR reports errors caused by extraneous
artifacts introduced during the source separation procedure. In
the past decade, the source separation community has been
seeking more precise information about source reconstruc-
tion performance; in particular, recent work [17], [34] and
competitions (e.g., Signal Separation Evaluation Campaign
(SiSEC), Music Information Retrieval Evaluation (MIREX))
now separately report SDR, SIR, and SAR for objectively
comparing different approaches. Note that these measures are
defined so that distortion = interference + artifacts. For the
speech denoising task, we additionally compute the short-time
objective intelligibility measure (STOI) which is a quantitative
estimate of the intelligibility of the denoised speech [35].
Higher values of SDR, SAR, SIR, and STOI represent higher
separation quality.
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Fig. 6. TSP speech separation results (Female vs. Male), where “w/o joint” indicates the network is not trained with the masking layer, and “discrim” indicates
the training with the discriminative objective. Note that the NMF model uses spectral features.
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Fig. 7. TSP speech separation results (Female vs. Female), where “w/o joint” indicates the network is not trained with the masking layer, and “discrim”
indicates the training with the discriminative objective. Note that the NMF model uses spectral features.

We use the abbreviations DRNN-k and sRNN to denote the
DRNN with the recurrent connection at the k-th hidden layer,
or at all hidden layers, respectively. Examples are shown in
Figure 1. We select the architecture and hyperparameters (the γ
parameter in Eq. (11), the mini-batch size, L-BFGS iterations,
and the circular shift size of the training data) based on the
development set performance.

We optimize our models by back-propagating the gradi-
ents with respect to the training objective in Eq. (11). We
use the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm [36] to train the models from random
initialization. Examples of the separation results are shown in
Figures 3, 4, and 5. The sound examples and source codes of
this work are available online.1

1https://sites.google.com/site/deeplearningsourceseparation/

A. Speech Separation Setting
We evaluate the performance of the proposed approaches for

a monaural speech separation task using the TSP corpus [13].
There are 1444 utterances, with average length 2.372 s, spoken
by 24 speakers (half male and half female). We choose four
speakers, FA (female), FB (female), MC (male), and MD (male),
from the TSP speech database. After concatenating together
60 sentences for each speaker, we use 80% of the signals
for training, 10% for development, and 10% for testing. The
signals are downsampled to 16 kHz. The neural networks are
trained on three different mixing cases: FA versus MC, FA
versus FB, and MC versus MD. Since FA and FB are female
speakers while MC and MD are male, the latter two cases
are expected to be more difficult due to the similar frequency
ranges from the same gender. After normalizing the signals
to have 0 dB input SNR, the neural networks are trained to
learn the mapping between an input mixture spectrum and the
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Fig. 8. TSP speech separation results (Male vs. Male), where “w/o joint” indicates the network is not trained with the masking layer, and “discrim” indicates
the training with the discriminative objective. Note that the NMF model uses spectral features.

corresponding pair of clean spectra.
As for the NMF experiments, 10 to 100 speaker-specific

basis vectors are trained from the training part of the signals.
The optimal number of basis vectors is chosen based on the
development set. We empirically found that using 20 basis
vectors achieves the best performance on the development
set in the three different mixing cases. The NMF separation
is done by fixing the known speakers’ basis vectors during
the test procedure and learning the speaker-specific activation
matrices.

We explore two different types of input features: spectral
and log-mel filterbank features. The spectral representation
is extracted using a 1024-point shot-time Fourier transform
(STFT) with 50% overlap. In the speech recognition literature
[37], the log-mel filterbank is found to provide lower word-
error-rate compared to mel-frequency cepstral coefficients
(MFCC) and log FFT bins. The 40-dimensional log-mel rep-
resentation and the first- and second-order derivative features
are used in the experiments. For the neural network training, in
order to increase the variety of training samples, we circularly
shift (in the time domain) the signals of one speaker and mix
them with utterances from the other speaker.

B. Speech Separation Results

We use the standard NMF with the generalized KL-
divergence metric as our baseline. We report the best NMF
results among models with different basis vectors, as shown
in the first column of Figures 6, 7, and 8. Note that NMF
uses spectral features, and hence the results in the second row
(log-mel features) of each figure are the same as the first row
(spectral features).

The speech separation results of the cases, FA versus MC,
FA versus FB, and MC versus MD, are shown in Figures 6, 7,
and 8, respectively. We train models with two hidden layers
of 300 hidden units using features with a context window
size of one frame (one frame within a window), where the
architecture and the hyperparameters are chosen based on the

development set performance. We report the results of single
frame spectra and log-mel features in the top and bottom rows
of Figures 6, 7, and 8, respectively. To further understand the
strength of the models, we compare the experimental results
in several aspects. In the second and third columns of Figures
6, 7, and 8, we examine the effect of joint optimization of the
masking layer and the DNN. Jointly optimizing the masking
layer significantly outperforms the cases where the masking
layer is applied separately (the second column). In the FA vs.
FB case, DNN without joint optimization of the masking layer
achieves high SAR, but results in low SDR and SIR. In the top
and bottom rows of Figures 6, 7, and 8, we compare the results
between spectral features and log-mel features. In the joint
optimization case, (columns 3–10), log-mel features achieve
higher SDRs, SIRs, and SARs compared to spectral features.
On the other hand, spectral features achieve higher SDRs and
SIRs in the case where DNN is not jointly trained with a
masking layer, as shown in the second column of Figures 6,
7, and 8. In the FA vs. FB and MC vs. MD cases, the log-mel
features outperform spectral features greatly.

Between columns 3, 5, 7, and 9, and columns 4, 6, 8, and 10
of Figures 6, 7, and 8, we make comparisons between various
network architectures, including DNN, DRNN-1, DRNN-2,
and sRNN. In many cases, recurrent neural network models
(DRNN-1, DRNN-2, or sRNN) outperform DNN. Between
columns 3 and 4, columns 5 and 6, columns 7 and 8, and
columns 9 and 10 of Figures 6, 7, and 8, we compare the
effectiveness of using the discriminative training criterion, i.e.,
γ > 0 in Eq. (11). In most cases, SIRs are improved. The
results match our expectation when we design the objective
function. However, it also leads to some artifacts which
result in slightly lower SARs in some cases. Empirically, the
value γ is in the range of 0.01–0.1 in order to achieve SIR
improvements and maintain reasonable SAR and SDR.

Finally, we compare the NMF results with our proposed
models with the best architecture using spectral and log-mel
features, as shown in Figure 9. NMF models learn activation
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Fig. 9. TSP speech separation result summary. We compare the results under
three settings, (a) Female vs. Male, (b) Female vs. Female, and (c) Male vs.
Male, using the NMF model, the best DRNN+discrim architecture with spectra
features, and the best DRNN+discrim architecture with log-mel features.

matrices from different speakers and hence perform poorly in
the same sex speech separation cases, FA vs. FB and MC vs.
MD. Our proposed models greatly outperform NMF models
for all three cases. Especially for the FA vs. FB case, our
proposed model achieves around 5 dB SDR gain compared to
the NMF model while maintaining higher SIR and SAR.

C. Singing Voice Separation Setting

We apply our models to a singing voice separation task,
where one source is the singing voice and the other source is
the background music. The goal is to separate singing voice
from music recordings.

We evaluate our proposed system using the MIR-1K dataset
[14].2 A thousand song clips are encoded at a sampling rate
of 16 KHz, with a duration from 4 to 13 seconds. The clips
were extracted from 110 Chinese karaoke songs performed by
both male and female amateurs. There are manual annotations
of the pitch contours, lyrics, indices and types for unvoiced
frames, and the indices of the vocal and non-vocal frames;
none of the annotations were used in our experiments. Each
clip contains the singing voice and the background music in
different channels.

Following the evaluation framework in [3], [4], we use 175
clips sung by one male and one female singer (“abjones” and
“amy”) as the training and development set.3 The remaining
825 clips of 17 singers are used for testing. For each clip, we
mixed the singing voice and the background music with equal
energy, i.e., 0 dB SNR.

To quantitatively evaluate the source separation results, we
report the overall performance via Global NSDR (GNSDR),
Global SIR (GSIR), and Global SAR (GSAR), which are
the weighted means of the NSDRs, SIRs, SARs, respectively,
over all test clips weighted by their length. Normalized SDR

2https://sites.google.com/site/unvoicedsoundseparation/mir-1k
3Four clips, abjones 5 08, abjones 5 09, amy 9 08, amy 9 09, are used

as the development set for adjusting the hyperparameters.

TABLE I
MIR-1K SEPARATION RESULT COMPARISON USING DEEP NEURAL
NETWORKS WITH SINGLE SOURCE AS A TARGET AND USING TWO

SOURCES AS TARGETS (WITH AND WITHOUT JOINT OPTIMIZATION OF THE
MASKING LAYERS AND THE DNNS).

Model (num. of output GNSDR GSIR GSARsources, joint optimization)
DNN (1, no) 5.64 8.87 9.73
DNN (2, no) 6.44 9.08 11.26
DNN (2, yes) 6.93 10.99 10.15

(NSDR) [38] is defined as:

NSDR(v̂,v,x) = SDR(v̂,v)− SDR(x,v) (12)

where v̂ is the estimated singing voice, v is the original clean
singing voice, and x is the mixture. NSDR is for estimating the
improvement of the SDR between the preprocessed mixture x
and the separated singing voice v̂.

For the neural network training, in order to increase the
variety of training samples, we circularly shift (in the time
domain) the signals of the singing voice and mix them with
the background music. In the experiments, we use magnitude
spectra as input features to the neural network. The spectral
representation is extracted using a 1024-point STFT with 50%
overlap. Empirically, we found that using log-mel filterbank
features or log power spectrum provide worse performance
than using magnitude spectra in the singing voice separation
task.

D. Singing Voice Separation Results

In this section, we compare various deep learning models
from several aspects, including the effect of different output
formats, the effect of different deep recurrent neural network
structures, and the effect of discriminative training.

For simplicity, unless mentioned explicitly, we report the
results using three hidden layers of 1000 hidden units deep
neural networks with the mean squared error criterion, joint
optimization of the masking layer, and 10 K samples as the
circular shift step size using features with a context window
size of three frames (three frames within a window).

Table I presents the results with different output layer
formats. We compare using single source as a target (row 1)
and using two sources as targets in the output layer (row 2 and
row 3). We observe that modeling two sources simultaneously
provides higher performance in GNSDR, GSIR, and GSAR.
Comparing row 2 and row 3 in Table I, we observe that jointly
optimizing the masking layer and the DRNN further improves
the results.

Table II presents the results of different deep recurrent
neural network architectures (DNN, DRNN with different
recurrent connections, and sRNN) with and without discrim-
inative training. We can observe that discriminative training
further improves GSIR while maintaining similar GNSDR and
GSAR.

Finally, we compare our best results with other previous
work under the same setting. Table III shows the results with
unsupervised and supervised settings. Our proposed models
achieve 2.30–2.48 dB GNSDR gain, 4.32–5.42 dB GSIR gain
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TABLE II
MIR-1K SEPARATION RESULT COMPARISON FOR THE EFFECT OF
DISCRIMINATIVE TRAINING USING DIFFERENT ARCHITECTURES.

“DISCRIM” DENOTES THE MODELS WITH DISCRIMINATIVE TRAINING.

Model GNSDR GSIR GSAR
DNN 6.93 10.99 10.15

DRNN-1 7.11 11.74 9.93
DRNN-2 7.27 11.98 9.99
DRNN-3 7.14 11.48 10.15

sRNN 7.09 11.72 9.88
DNN + discrim 7.09 12.11 9.67

DRNN-1 + discrim 7.21 12.76 9.56
DRNN-2 + discrim 7.45 13.08 9.68
DRNN-3 + discrim 7.09 11.69 10.00

sRNN + discrim 7.15 12.79 9.39

TABLE III
MIR-1K SEPARATION RESULT COMPARISON BETWEEN OUR MODELS AND

PREVIOUS PROPOSED APPROACHES. “DISCRIM” DENOTES THE MODELS
WITH DISCRIMINATIVE TRAINING.

Unsupervised
Model GNSDR GSIR GSAR

RPCA [1] 3.15 4.43 11.09
RPCAh [5] 3.25 4.52 11.10

RPCAh + FASST [5] 3.84 6.22 9.19
Supervised

Model GNSDR GSIR GSAR
MLRR [4] 3.85 5.63 10.70
RNMF [3] 4.97 7.66 10.03
DRNN-2 7.27 11.98 9.99

DRNN-2 + discrim 7.45 13.08 9.68

with similar GSAR performance, compared with the RNMF
model [3].

E. Speech Denoising Setting
We apply the proposed framework to a speech denoising

task, where one source is the clean speech and the other source
is the noise. The goal of the task is to separate clean speech
from noisy speech. In the experiments, we use magnitude
spectra as input features to the neural network. The spectral
representation is extracted using a 1024-point STFT with
50% overlap. Empirically, we found that log-mel filterbank
features provide worse performance than magnitude spectra.
Unless mentioned explicitly, we use two hidden layers of 1000
hidden units deep neural networks with the mean squared
error criterion, joint optimization of the masking layer, and
10 K samples as the circular shift step size, using features
with a context window size of one frame (one frame within a
window). The model is trained and tested on 0 dB mixtures,
without input normalization.

To understand the effect of degradation in the mismatch
condition, we set up the experimental recipe as follows. We
use a hundred utterances spanning ten different speakers from
the TIMIT database. We also use a set of five noises: Airport,
Train, Subway, Babble, and Drill. We generate a number of
noisy speech recordings by selecting random subsets of noises
and overlaying them with speech signals. We also specify the
signal to noise ratio when constructing the noisy mixtures.
After we complete the generation of the noisy signals, we
split them into a training set and a test set.
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Fig. 10. Speech denoising architecture comparison, where “+discrim” indi-
cates the training with the discriminative objective, and the bars show average
values and the vertical lines on the bars denote minimum and maximum
observed values. Models are trained and tested on 0 dB SNR inputs. The
average STOI score for unprocessed mixtures is 0.675.
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Fig. 11. Speech denoising using multiple SNR inputs and testing on a model
that is trained on 0 dB SNR, where the bars show average values and the
vertical lines on the bars denote minimum and maximum observed values.
The left/back, middle, right/front bars in each pair show the results of NMF,
DNN without joint optimization of the masking layer [17], and DNN with
joint optimization of the masking layer, respectively. The average STOI scores
for unprocessed mixtures at -18 dB, -12 dB, -6 dB, 0 dB, 6 dB, 12 dB, and 20
dB SNR are 0.370, 0.450, 0.563, 0.693, 0.815, 0.903, and 0.968, respectively.

F. Speech Denoising Results

In the following experiments, we examine the effect of the
proposed methods under various scenarios. We first evaluate
various architectures using 0 dB SNR inputs, as shown in
Figure 10. We can observe that the recurrent neural network
architectures (DRNN-1, DRNN-2, sRNN) achieve similar
performance compared to the DNN model. Including the
discriminative training objective improves SDR and SIR, but
results in slightly degraded SAR and similar STOI values.

To further evaluate the robustness of the model, we examine
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(b) Unknown speakers
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(c) Unknown noise

0

0.2

0.4

0.6

0.8

1

ST
O

I

SDR SIR SAR STOI
0

5

10

15

20

25

30

35

40

Metric

dB

Performance with Unknown Speakers and Noise

 

 
NMF
DNN without joint optimization
DNN with joint optimization

(d) Unknown speakers and noise

Fig. 12. Speech denoising experimental results comparison between NMF, DNN without joint optimization of the masking layer [17], and DNN with joint
optimization of the masking layer, given 0 dB SNR inputs, when used on data that is not represented in training. The bars show average values and the vertical
lines on the bars denote minimum and maximum observed values. We show the separation results of (a) known speakers and noise, (b) unseen speakers, (c)
unseen noise, and (d) unseen speakers and noise. The average STOI scores for unprocessed mixtures for cases (a), (b), (c), and (d) are 0.698, 0.686, 0.705,
and 0.628, respectively.

our model under a variety of situations in which it is presented
with unseen data, such as unseen SNRs, speakers, and noise
types. These tests provide a way of understanding the perfor-
mance of the proposed approach under mismatched conditions.
In Figure 11, we show the robustness of this model under
various SNRs. The model is trained on 0 dB SNR mixtures
and it is evaluated on mixtures ranging from 20 dB SNR to -18
dB SNR. We compare the results between NMF, DNN without
joint optimization of the masking layer, and DNN with joint
optimization of the masking layer. In most cases, DNN with
joint optimization achieves the best results, especially under
low SNR inputs. For the 20 dB SNR case, NMF achieves the
best performance. DNN without joint optimization achieves
the highest SIR given high SNR inputs, though SDR, SAR,
and STOI are lower than the DNN with joint optimization.
Note that in our approach, joint optimization of the time-
frequency masks and DNNs can be viewed as a way to directly
incorporate the FFT-MASK targets [23] into the DNNs for
both speech and noise, where authors in [23] found FFT-
MASK has achieved better performance compared to other

targets in speech denoising tasks.
Next, we evaluate the models under three different cases: (1)

the testing noise is unseen in training, (2) the testing speaker is
unseen in training, and (3) both the testing noise and testing
speaker are unseen in training stage. For the unseen noise
case, we train the model on mixtures with Babble, Airport,
Train and Subway noises, and evaluate it on mixtures that
include a Drill noise (which is significantly different from the
training noises in both spectral and temporal structure). For
the unknown speaker case, we hold out some of the speakers
from the training data. For the case where both the noise and
speaker are unseen, we use the combination of the above.

We compare our proposed approach with the NMF model
and DNN without joint optimization of the masking layer
[17]. The models are trained and tested on 0 dB SNR inputs,
and these experimental results are shown in Figure 12. For
the unknown speaker case, as shown in Figure 12 (b), we
observe that there is only a mild degradation in performance
for all models compared to the case where the speakers are
known in Figure 12 (a). The results suggest that the approaches
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can be easily used in speaker variant situations. In Figure 12
(c), with the unseen noise, we observe a larger degradation
in results, which is expected due to the drastically different
nature of the noise type. For the case where both the noise
and speakers are unknown, as shown in Figure 12 (d), all three
models achieve the worst performance compare to the other
cases. Overall, the proposed approach generalizes well across
speakers and achieves higher source separation performance,
especially in SDRs, compared to the baseline models under
various conditions.

G. Discussion

Throughout the experiments in speech separation, singing
voice separation, and speech denoising tasks, we have seen
significant improvement over the baseline models under var-
ious settings, by the use of joint optimization of time-
frequency masks with deep recurrent neural networks and
the discriminative training objective. By jointly optimizing
time-frequency masks with deep recurrent neural networks,
the proposed end-to-end system outperforms baseline models
(such as NMF, DNN models without joint optimization) in
matched and mismatched conditions. Given audio signals are
time series in nature, we explore various recurrent neural
network architectures to capture temporal information and
further enhance performance. Though there are extra memory
and computational costs compared to feed-forward neural
networks, DRNNs achieve extra gains, especially in the speech
separation (0.5 dB SDR gain) and singing voice separation
(0.34 dB GNSDR gain) tasks. Similar observations can be
found in related work using LSTM models [19], [39], where
the authors observe significant improvements using recurrent
neural networks compared with DNN models. Our proposed
discriminative objective can be viewed as a regularization
term towards the original mean-squared error objective. By
enforcing the similarity between targets and predictions of the
same source and dissimilarity between targets and predictions
of competing sources, we observe that interference is further
reduced while maintaining similar or higher SDRs and SARs.

V. CONCLUSION AND FUTURE WORK

In this paper, we explore various deep learning architectures,
including deep neural networks and deep recurrent neural
networks for monaural source separation problems. We en-
hance the performance by jointly optimizing a soft time-
frequency mask layer with the networks in an end-to-end
fashion and exploring a discriminative training criterion. We
evaluate our proposed method for speech separation, singing
voice separation, and speech denoising tasks. Overall, our
proposed models achieve 2.30–4.98 dB SDR gain compared to
the NMF baseline, while maintaining higher SIRs and SARs
in the TSP speech separation task. In the MIR-1K singing
voice separation task, our proposed models achieve 2.30–2.48
dB GNSDR gain and 4.32–5.42 dB GSIR gain, compared to
the previously proposed methods, while maintaining similar
GSARs. Moreover, our proposed method also outperforms
NMF and DNN baselines in various mismatch conditions
in the TIMIT speech denoising task. To further improve

the performance, one direction is to further explore using
LSTMs to model longer temporal information [40], which has
shown great performance compared to conventional recurrent
neural networks as LSTM has properties of avoiding vanishing
gradient properties. In addition, our proposed models can also
be applied to many other applications such as robust ASR.
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