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ABSTRACT

Separating singing voices from music accompaniment is
an important task in many applications, such as music infor-
mation retrieval, lyric recognition and alignment. Music ac-
companiment can be assumed to be in a low-rank subspace,
because of its repetition structure; on the other hand, singing
voices can be regarded as relatively sparse within songs. In
this paper, based on this assumption, we propose using ro-
bust principal component analysis for singing-voice separa-
tion from music accompaniment. Moreover, we examine the
separation result by using a binary time-frequency masking
method. Evaluations on the MIR-1K dataset show that this
method can achieve around 1∼1.4 dB higher GNSDR com-
pared with two state-of-the-art approaches without using prior
training or requiring particular features.

Index Terms— Robust Principal Component Analysis,
Music/Voice Separation, Time-Frequency Masking

1. INTRODUCTION

A singing voice provides useful information for a song, as
it embeds the singer, the lyrics, and the emotion of the song.
There are many applications using this information, for exam-
ple, lyric recognition [1] and alignment [2], singer identifica-
tion [3], and music information retrieval [4]. However, these
applications encounter problems when music accompaniment
exists, since music accompaniment is as noise or interference
to singing voices. An automatic singing-voice separation sys-
tem is used for attenuating or removing the music accompa-
niment.

Human auditory system has extraordinary capability in
separating singing voices from background music accompa-
niment. Although this task is effortless for humans, it is dif-
ficult for machines. In particular, when spatial cues acquired
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Fig. 1. Proposed framework

from two or more microphones are not available, monaural
singing-voice separation becomes very challenging.

Previous work on singing-voice separation systems can
be classified into two categories: (1) Supervised systems,
which usually first map signals onto a feature space, then
detect singing voice segments, and finally apply source sep-
aration techniques such as non-negative matrix factorization
[5], adaptive Bayesian modeling [6], and pitch-based inter-
ference [7, 8]. (2) Unsupervised systems, which requires no
prior training or particular features, such as the source/filter
model [9] and the autocorrelation-based method [10].

In this paper, we propose to model accompaniment based
on the idea that repetition is a core principle in music [11];
therefore we can assume the music accompaniments lie in a
low-rank subspace. On the other hand, the singing voice has
more variation and is relatively sparse within a song. Based
on these assumptions, we propose to use Robust Principal
Component Analysis (RPCA) [12], which is a matrix factor-
ization algorithm for solving underlying low-rank and sparse
matrices.

The organization of this paper is as follows: Section 2
introduces RPCA. Section 3 discusses binary time frequency
masks for source separation. Section 4 presents the experi-
mental results using the MIR-1K dataset. We conclude the
paper in Section 5.



2. ROBUST PRINCIPAL COMPONENT ANALYSIS

Candès et al. [12] proposed RPCA, which is a convex pro-
gram, for recovering low-rank matrices when a fraction of
their entries have been corrupted by errors, i.e., when the ma-
trix is sufficiently sparse. The approach, Principal Compo-
nent Pursuit, suggests solving the following convex optimiza-
tion problem:

minimize ||L||∗ + λ||S||1
subject to L+ S =M

where M ∈ Rn1×n2 , L ∈ Rn1×n2 , S ∈ Rn1×n2 . || · ||∗
and || · ||1 denote the nuclear norm (sum of singular values)
and the L1-norm (sum of absolute values of matrix entries),
respectively. λ > 0 is a trade-off parameter between the rank
of L and the sparsity of S. As suggested in [12], using a value
of λ = 1/

√
max(n1, n2) is a good rule of thumb, which can

then be adjusted slightly to obtain the best possible result. We
explore λk = k/

√
max(n1, n2) with different values of k,

thus testing different tradeoffs between the rank of L and the
sparsity of S.

Since music instruments can reproduce the same sounds
each time they are played and music has, in general, an under-
lying repeating musical structure, we can think of music as a
low-rank signal. Singing voices, on the contrary, have more
variation (higher rank) but are relatively sparse in the time and
frequency domains. We can then think of singing voices as
components making up the sparse matrix. By RPCA, we ex-
pect the low-rank matrix L to contain music accompaniment
and the sparse matrix S to contain vocal signals.

We perform the separation as follows: First, we compute
the spectrogram of music signals as matrix M , calculated
from the Short-Time-Fourier Transform (STFT). Second,
we use the inexact Augmented Lagrange Multiplier (ALM)
method [13], which is an efficient algorithm for solving
RPCA problem, to solve L + S = |M |, given the input
magnitude of M . Then by RPCA, we can obtain two output
matrices L and S. From the example spectrogram, Figure 2,
we can observe that there are formant structures in the sparse
matrix S, which indicates vocal activity, and musical notes in
the low-rank matrix L.

Note that in order to obtain waveforms of the esti-
mated components, we record the phase of original sig-
nals P = phase(M), append the phase to matrix L and
S by L(m,n) = LejP (m,n), S(m,n) = SejP (m,n), for
m = 1 . . . n1 and n = 1 . . . n2, and calculate the inverse
STFT (ISTFT). The source codes and sound examples are
available at http://mickey.ifp.uiuc.edu/wiki/Software.

3. TIME-FREQUENCY MASKING

Given the separation results of the low-rank L and sparse S
matrices, we can further apply binary time-frequency mask-
ing methods for better separation results. We define binary

(a) Original Matrix M

(b) Low-Rank Matrix L

(c) Sparse Matrix M

Fig. 2. Example RPCA results for yifen 2 01 at SNR=5 for (a) the
original matrix, (b) the low-rank matrix, and (c) the sparse matrix.

time frequency masking Mb as follows:

Mb(m,n) =

{
1 |S(m,n)| > gain ∗ |L(m,n)|
0 otherwise (1)

for all m = 1 . . . n1 and n = 1 . . . n2.

Once the time-frequency mask Mb is computed, it is ap-
plied to the original STFT matrix M to obtain the separation
matrix Xsinging and Xmusic, as shown in Equation (2).{

Xsinging(m,n) = Mb(m,n)M(m,n)
Xmusic(m,n) = (1−Mb(m,n))M(m,n)

(2)
for all m = 1 . . . n1 and n = 1 . . . n2.

To examine the effectiveness of the binary mask, we assign
Xsinging = S and Xmusic = L directly as the case with no
mask.



4. EXPERIMENTAL RESULTS

4.1. Dataset

We evaluate our system using the MIR-1K dataset1. There are
1000 song clips encoded with a sample rate of 16 kHz, with
a duration from 4 to 13 sec. The clips were extracted from
110 Chinese karaoke pop songs performed by both male and
female amateurs. The dataset includes manual annotations
of the pitch contours, lyrics, indices and types for unvoiced
frames, and indices of the vocal and non-vocal frames.

4.2. Evaluation

Following the evaluation framework in [8, 10], we create
three sets of mixtures using the 1000 clips of the MIR-1K
dataset. For each clip, the singing voice and the music accom-
paniment were mixed at -5, 0, and 5 dB SNRs, respectively.
Zero indicates that the singing voice and the music are at the
same energy levels, negative values indicate the energy of the
music accompaniment is larger than the singing voice, and so
on.

For source separation evaluation, in addition to evaluating
the Global Normalized Source to Distortion Ratio (GNSDR)
as [8, 10], we also evaluate our performance in terms of
Source to Interference Ratio (SIR), Source to Artifacts Ratio
(SAR), and Source to Distortion Ratio (SDR) by BSS-EVAL
metrics [14]. The Normalized SDR (NSDR) is defined as

NSDR(v̂, v, x) = SDR(v̂, v)− SDR(x, v) (3)

where v̂ is the resynthesized singing voice, v is the origi-
nal clean singing voice, and x is the mixture. NSDR is for
estimating the improvement of the SDR between the prepro-
cessed mixture x and the separated singing voice v̂. The
GNSDR is calculated by taking the mean of the NSDRs over
all mixtures of each set, weighted by their length.

GNSDR(v̂, v, x) =
∑N

n=1 wnNSDR(v̂n, vn, xn)∑N
n=1 wn

(4)

where n is the index of a song and N is the total number of
the songs, and wn is the length of the nth song. Higher values
of SDR, SAR, SIR, and GNSDR represent better separation
quality2.

4.3. Experiments

In the separation process, the spectrogram of each mixture
is computed using a window size of 1024 and a hop size of
256 (at Fs=16,000). Three experiments were run: (1) an eval-
uation of the effect of λk for controlling low rankness and
sparsity, (2) an evaluation of the effect of the gain factor with

1https://sites.google.com/site/unvoicedsoundseparation/mir-1k
2The suppression of noise is reflected in SIR. The artifacts introduced

by the denoising process are reflected in SAR. The overall performance is
reflected in SDR.

a binary mask, and (3) a comparison of our results with the
previous literature [8, 10] in terms of GNSDR.
(1) The effect of λk
The value λk = k/

√
(max(n1, n2) can be used for trading

off the rank of L with the sparsity of S. The matrix S is sparser
with higher λk, and vice versa. Intuitively, for the source sep-
aration problem, if the matrix S is sparser, there is less inter-
ference in the matrix S; however, deletions of original signal
components might also result in artifacts. On the other hand,
if S matrix is less sparse, the signal contains less artifacts,
but there is more interference from the other sources that ex-
ist in matrix S. Experimental results (Figure 3) show these
trends for both the case of no mask and the case of binary
mask (gain=1) at different SNR values.
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Fig. 3. Comparison between the case using (a) no mask and (b) a
binary mask at SNR={-5,0,5}, k (of λk)={0.1, 0.5, 1, 1.5, 2, 2.5},
and gain=1.

(2) The effect of the gain factor with a binary mask
The gain factor adjusts the energy between the sparse matrix
and the low-rank matrix. As shown in Figure 4, we exam-
ine different gain factors {0.1, 0.5, 1, 1.5, 2} at λ1 where
SNR={-5, 0, 5}. Similar to the effect of λk, a higher gain
factor results in a lower power sparse matrix S. Hence, there
is larger interference and fewer artifacts at high gain, and vice
versa.
(3) Comparison with previous systems
From previous observations, moderate values for λk and the
gain factor balance the separation results in terms of SDR,
SAR, and SIR. We empirically choose λ1 (also suggested in
[12]) and gain = 1 to compare with previous literature on
singing-voice separation in terms of GNSDR using the MIR-
1K dataset [8, 10].

Hsu and Jang [8] performed singing-voice separation us-
ing a pitch-based inference separation method on the MIR-
1K dataset. Their method combines the singing-voice separa-
tion method [7], the separation of the unvoiced singing-voice
frames, and a spectral subtraction method. Rafii and Pardo
proposed a singing-voice separation method by extracting the
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mask with λ1

repeating musical structure estimated by the autocorrelation
function [10] .

As shown in Figure 5, both our approach using binary
mask and our approach using no mask achieve better GNSDR
compared with previous approaches [8, 10], with the no mask
approach providing the best overall results. These methods
are compared to an ideal situation where an ideal binary mask
is used as the upper-bound performance of the singing-voice
separation task with algorithms based on binary masking
technique.
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5. CONCLUSION AND FUTURE WORK

In this paper, we proposed an unsupervised approach which
applies robust principal component analysis on singing-voice
separation from music accompaniment for monaural record-
ings. We also examined the parameter λk in RPCA and the
gain factor with a binary mask in detail. Without using prior
training or requiring particular features, we are able to achieve
around 1∼1.4 dB higher GNSDR compared with two state-
of-the-art approaches, by taking into account the rank of mu-
sic accompaniment and the sparsity of singing voices.

There are several ways in which this work could be ex-
tended, for example, (1) to investigate dynamic parameter se-
lection methods according to different contexts, or (2) to ex-

pand current work to speech noise reduction, since in many
situations, the noise spectrogram is relatively low-rank, while
the speech spectrogram is relatively sparse.
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