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ABSTRACT

Unattended wireless sensor networks have been widely
used in many applications. This paper proposes automatic
sensor selection methods based on crowdsourcing models
in the Opportunistic Sensing framework, with applications
to unattended acoustic sensor selection. Precisely, we pro-
pose two sensor selection criteria and solve them via greedy
algorithm and quadratic assignment. Our proposed method
achieves, on average, 5.64% higher accuracy than the tradi-
tional approach under sparse reliability conditions.

Index Terms— Crowdsourcing models, Quadratic As-
signment Problem, Unattended Sensor Networks, Oppor-
tunistic Sensing, Cooperative Sensing

1. INTRODUCTION

Unattended wireless sensor networks have been widely used
in many applications such as target detection, classification,
tracking, surveillance, and situation awareness [1, 2]. Unat-
tended wireless sensor networks have advantages over iso-
lated sensor arrays for extended coverage and improved per-
formance. It is possible to have a large number of sensors
deployed randomly to cover remote or hostile regions through
air-drop or gun projection so that a certain region can be mon-
itored during days and nights [3].

In addition to sensor networks’ performance (e.g. classi-
fication accuracy), energy efficiency is a critical concern in
unattended wireless sensor networks. Video sensors consume
large amounts of power and require a large volume for stor-
age. Hence, it is preferable to use non-imaging sensors, since
they tend to use small amounts of power and are long-lasting.
Further, for energy conservation, it is desirable to have sen-
sors actively listen (active mode) to the environment only
when there are targets present, and to have sensors mostly
quiescent (periodic listen and sleep mode) when there is no
target present [4, 5]. Moreover, in noisy conditions, in order
to reduce errors, we would like to have a sensor selection
framework so that we only activate reliable sensors and make

a decision from their responses, while leaving unreliable
sensors in the periodic listen and sleep mode.

The idea of selecting reliable sensors can be generalized
into the Opportunistic Sensing (OS) framework. The goal of
OS is to have an adaptive network that automatically finds
objective-driven, scenario-dependent opportunities with opti-
mized performance. Specifically, OS automatically discovers
and selects sensing platforms and sensor modalities based on
an operational scenario, determines the appropriate set of fea-
tures and optimal means for data collection based on these
features, obtains missing information by querying resources
available, and uses appropriate methods to fuse multi-modal
data [6].

In this paper, we focus on the automatic selecting of
sensing platforms and sensor modalities aspect of OS; that
is, given energy constraints, we want to select the minimum
number of sensors while maintaining a certain quality of
service. Specifically, we propose a general sensor selection
framework based on crowdsourcing models with applica-
tions to unattended acoustic sensor selection, and we propose
two objective functions solved with greedy algorithm and
quadratic assignment.

The remainder of this paper is organized as follows: Sec-
tion 2 will briefly describe related work. Section 3 presents
the sensor selection problem formulation, its relation to
crowdsourcing models, and the optimization problems. The
experiment setups, along with results, are described in Sec-
tion 4. Section 5 concludes the paper and discusses future
work.

2. PREVIOUS WORK

The goal of sensor selection in a sensor network is to se-
lect sensors that capture informative and reliable data. This
paper proposes a sensor selection framework with applica-
tions to unattended wireless acoustic sensor networks; that is,
our proposed methods select a small number of microphones
based on signal probability distributions implied by the net-
work. For an acoustic sensor array/network, the problem of



optimally fusing signals from multiple microphones is one of
the classical problems of signal processing [7], but few pa-
pers have considered the problem of selecting a small number
of microphones while leaving the remainder turned off. Con-
versely, many papers consider power management strategies
for distributed sensor networks [8], but few consider the par-
ticular spatiotemporal signal probability distributions implied
by a network of loosely synchronized microphones.

The ideas of selecting informative data and selecting
acoustic sensors are also described in [9, 10] and in [3], re-
spectively. Huang et al. [9, 10] proposed a framework of
actively sensing and fusing information from acoustic, ul-
trasonic, and seismic sensors for personnel/animal detection.
The authors proposed an active sensing algorithm to actively
select highly informative data based on the energy level of
seismic sensors. Instead of selecting informative data from a
multimodal sensor, this paper further considers the acoustic
sensor network case and focuses on selecting reliable sensors
to make reliable decisions. Zhang et al. presented an acous-
tic sensor node selection algorithm to select a set of sensor
nodes for source localization and target tracking [3]. Our
approach, on the other hand, considers optimizing objective
functions using crowdsourcing models for sensor selection in
a one-shot scenario.

3. SENSOR SELECTION

In this section, we describe the sensor selection problem for-
mulation with applications to unattended wireless acoustic
sensor networks, its relation to crowdsourcing models, and
the optimization problems.

3.1. Problem Formulation

The unattended wireless acoustic sensor network is used for
detecting a ground target (e.g. a tank or other vehicle) in the
region covered by the sensor network. Each sensor node in
the network consists of a power supply/battery, a microphone,
and an information-exchanging wireless communication in-
terface.

Suppose that there are N sensor nodes deployed in a re-
gion and there is a high level of background noise (e.g. wind
sounds) with uniform power spectrum everywhere in the re-
gion. Assume that there is a single ground target, which
makes sounds. For audio signals, the drop of sound intensity
follows the inverse distance square law. Given a target in the
region covered by the sensor network, each sensor node can
estimate its reliability and make a decision about the pres-
ence/absence of the target based on its observed signals. The
details are described in Sec. 3.3 below. The goal is to have an
automatic sensor selection criterion such that a final decision
is made based on the aggregated decision from selected reli-
able sensors, and unreliable sensors are set to periodic listen
and sleep mode for energy conservation. Note that, for each

Fig. 1. An example of a crowdsourcing model, where there
are m tasks ti, 1 ≤ i ≤ m, and n workers wj , 1 ≤ j ≤ n.
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sensor node, the reliability estimation can be done in the lis-
ten phase of the periodic listen and sleep mode of the sensors
within a short period of time, and that the selected sensors are
set to active mode for further monitoring.

3.2. Crowdsourcing Model

The problem formulation can be interpreted using crowd-
sourcing models [11]. We can think of each sensor as a
worker and each target as a task. Consider the case that we
need to pay a certain fee when we assign a task to a worker,
that is, turn on a sensor to detect a target. Given a budget con-
straint, we would like to have a minimum number of workers
assigned to the given task, with reliable prediction accuracy.

Suppose there are a set ofm tasks/events/targets {ti}i∈[m]

with true answer si ∈ {1,−1}. For example, the label corre-
sponds to the existence of a target (+1) or not (−1). Then, n
workers are selected from the crowd for these tasks. Figure 1
shows the idea of assigning m tasks to n workers.

When a task is assigned to a worker, the answer from the
worker might be inaccurate. We let Aij ∈ {±1} denote the
answer for task ti assigned to workerwj . Since some workers
are more reliable than others, we can model the workers’ re-
liability by pij ∈ [0, 1]. To be specific, the answer of worker
wj to task ti is

Aij =


si, with probability pij ,
−si, with probability 1− pij ,
0, ti is not assigned to wj .

(1)

For an acoustic signal, the sound power drops 6 dB ev-
ery time the distance doubles. Therefore, the error proba-
bility of a worker depends on the distance between the task
target and the sensor. Note that in reality, e.g. in an open
field, there is a high level of background noise such as wind



Fig. 2. Sensor reliability as a function of sensor location. An
example scenario of a target located at coordinates (7.5, 4.5).
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sounds. Figure 2 illustrates a target making a sound at lo-
cation (7.5,4.5) and sensor reliability dropping in distance.
Therefore, selecting sensors based on the sound energy is not
reliable. Precisely, in the acoustic sensor network scenario,
the reliability of each sensor/worker is modeled by the error
probability of a signal classifier distinguishing two hypothe-
ses, viz. H0: s[n] = v[n] vs. H1: s[n] = d[n] + v[n],
where d[n] is for simplicity assumed to be a known signal
of known duration, and v[n] is a Gaussian disturbance. By
thresholding the output of a matched filter, assuming equally
likely hypotheses, one can achieve the Bayes minimum error
rate 1− pij = C exp(−SNR) = a exp(− 1

r2 ), where r is dis-
tance from sensor j to target i, and C and a are constants. In
this setting, only a few sensors that are close to the target can
have reliability pij > 0.5. For each sensor, the actual distance
to the target is unknown (i.e., ground truth pij is unknown),
but each sensor can estimate the distance according to the es-
timated signal-to-noise ratio, ŜNR. From the estimated dis-
tance information, sensor wj has an estimated reliability p̂ij
for task ti. Each sensor models pij as a random variable γij .
For task ti, the reliability of workers {γij}1≤j≤n is a set of
random variables taking values in [0, 1]. Previous applications
of the crowdsourcing model assume high average reliability.
For example, [11] assumes that E[2γij−1] > 0. We deal with
the situation where most sensors have low reliability, namely,
(E[2γij−1] < 0). In this setting, the reliable sensors for each
given target are sparse.

3.3. Sensor Selection Objectives

Given the crowdsourcing model under the condition of sparse
reliable sensors, we propose our sensor selection model as
follows. We assume that the target location is uniformly dis-
tributed. We define the signal as d[n], noise as v[n], and ob-

served signal as s[n] = d[n] + v[n]. The ground true re-
liability pij and the estimated reliability p̂ij follow pij =

1−C exp(−SNR) and p̂ij = 1−C exp(−ŜNR), respectively,

where SNR =
N−1 ∑

n d[n]
2

σ2
v

and ŜNR =
N−1 ∑

n s[n]
2

σ̂2
v

− 1,
N is the observation window length, and σv and σ̂v are the
standard deviation of noise v[n] and estimated noise v̂[n], re-
spectively. The constant C is set to 1 in this paper.

We propose two objective functions to select J sensors
out of n total sensors (the set of selected sensors is denoted as
J , where |J | = J) for each task ti:

• Select J sensors such that the probability of success is
maximized

J = argmax
J,J :|J |=J

Psuccessj∈J (p̂ij) (2)

where Psuccess is the success probability of a majority
voting scheme, for example, given p1, p2, and p3, the
probability of success is modeled asPsuccessj∈{1,2,3}(pj) =
p1p2p3+p1p2(1−p3)+p2p3(1−p1)+p1p3(1−p2).

• Select J sensors such that the probability of average
reliability less than a threshold α is minimized

J = argmin
J,J :|J |=J

P (
1

J

∑
j∈J

γij < α|γ̂i{:}) (3)

where, by Bayes’ rule, P (γij |γ̂ij) ∝ P (γij) ×
P (γ̂ij |γij), and γ̂ij is an external confidence esti-
mator that can look at each measurement. Given that
pij = 1 − C exp(−SNR) = 1 − a exp(− 1

r2 ), and
assuming uniformly distributed target location, so that
P (r ≤ R) ∝ R2, it can be shown that the PDF of
random variable γij has a roughly power law formula.
In this article, we assume a simplified power law, we
let γij follow the distribution P (γij = pij) ∝ 1

pij
.

Once γij is generated, γij serves as the parameter
of the binomial distribution generating the number of
successes worker wj achieves in performing task ti,
namely, random variable Xij ∼ B(N,γij). The max-
imum likelihood estimate of γij is γ̂ij = Xij/N .
This estimate is itself a random variable. Precisely,
P (γ̂ij |γij) follows a scaled binomial distribution. We
are interested in P (γij |γ̂ij = p̂ij) following the Bayes
rule. The parameter N is set to 2 in this paper. Figure
3 illustrates the two generative processes as a Bayesian
net.

3.4. Optimization

3.4.1. Greedy Approach

Equations (2) and (3) can be solved using a greedy algorithm.
Instead of combinatorially choosing J sensors out of n total
sensors, we can first sort p̂i{:} from high to low, and then



Fig. 3. An illustration of the two generative processes as a
Bayesian net. γij , Xij , and γ̂ij are random variables. The
shaded nodes are observed.
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select top J sensors to form set J according to the objection
functions. Specifically, in Eq. (2), we select J sensors to
maximize the probability of success according to the estimate
probabilities p̂i{:}. In Eq. (3), we define Sp =

∑
j∈J γij ,

Ŝp = γ̂i{:}, and MSp
(t) is the moment generating function

of Sp, given Ŝp. The one-sided Chebyshev bound specifies
that

P (X − µ ≥ kσ) ≤ 1

1 + k2

Thus we can find

J = argmin
J,J :|J |=J

P (Sp < Jα|Ŝp)

≈ argmin
J,J :|J |=J

{
(Jα− E[Sp|Ŝp])2

Var(Sp|Ŝp) + (Jα− E[Sp|Ŝp])2

}
(4)

where the calculations are done using the property that the
moment generating function for Sp is the multiplication of
the moment generating functions of each of the γij , given

γ̂ij . The mean and variance are E[Sp|Ŝp] =
dMSp (t)

dt

∣∣
t=0

,

Var(Sp|Ŝp) =
d2MSp (t)

dt2

∣∣
t=0
− E[Sp|Ŝp]2, respectively.

3.4.2. Quadratic Assignment Problem

Equation (3) can be solved globally by formulating our ob-
jective function as a quadratic assignment problem (QAP)
[12, 13]. Given matrices A,B,C ∈ Rñ×ñ, the QAP min-
imizes a quadratic function over a permutation matrix X as
shown in Eq. (5).

min
X∈Rñ×ñ

tr(AXBTXT ) + tr(CTX)

subject to XTX = I

X ≥ 0

(5)

where the permutation matrix X = [xji] ∈ {0, 1}ñ×ñ is an
assignment matrix, where each row and each column have
only one nonzero entry of 1, and xji = 1 represents assigning
worker wj to task ti. Note that X is a permutation matrix of
size ñ by ñ if and only if the following conditions hold: X ∈
Rñ×ñ, XTX = I , and X ≥ 0 (component-wise positive).

The QAP objective is from∑
1≤i,j,k,l≤ñ

ai,jbk,lxi,kxj,l +
∑

1≤i,j≤ñ

ci,jxi,j

= tr(AXBTXT ) + tr(CTX)

where ai,j is the cost between workers wi and wj , bk,l is the
costs between tasks tk and tl, and ci,j is the cost between
worker wi and task tj .

Hence, Eq. (4) can be written as selecting X , such that:

X = argmin
X

{
(Jα− E[Sp|Ŝp])2

Var(Sp|Ŝp) + (Jα− E[Sp|Ŝp])2

}
≈ argmin

X

[
E[Sp|Ŝp]2 − 2JαE[Sp|Ŝp]

+J2α2 − λVar(Sp|Ŝp)
] (6)

where the latter equation is relaxed using a Lagrangian multi-
plier λ. The number of active sensors J 1, the mean E[Sp|Ŝp],
and variance Var(Sp|Ŝp), by adding dummy tasks and work-
ers, can be formulated as the following:

E[Sp|Ŝp] =



E[γi1|γ̂i1]
...

E[γin|γ̂in]
0
...
0



T

X



1
...
1
0
...
0



Var(Sp|Ŝp) =



Var(γi1|γ̂i1)
...

Var(γin|γ̂in)
0
...
0



T

X



1
...
1
0
...
0



J =



1
...
1
0
...
0



T

X



1
...
1
0
...
0


where X ∈ Rñ×ñ, ñ = 2n, n is the total number of sensors.
By matrix trace tricks:

1Note that, in the QAP approach, the set J is selected automatically.



(aTXb)(cTXd) = (aTXb)T (cTXd)

= tr(bTXacTXd)

= tr(acTXdbTXT )

(7)

where a, b ∈ Rñ are vectors, we can formulate Eq. (6) into
QAP formulation in Eq. (5).

4. EXPERIMENTS

In our experiment, simulations are used to evaluate the ef-
fectiveness of our proposed sensor selection criteria. In our
simulation, there are a hundred sensors and each one is at
the grid point of a 10 × 10 Cartesian grid. N = 1000
targets/tasks occur independently at random positions in
the grid. For each sensor, the signal at the j-th sensor
dj [n] = dtarget[n]/r

2
j , where dtarget[n] is the original sig-

nal generated from the target and rj is the distance from
the target to the j-th sensor. In each setup, we generate
white Gaussian noise uniformly for each sensor at SNR =
{−6.51,−5.21,−4.34,−3.91,−3.47,−3.04,−2.17,−1.30,
0.00} dB , where the corresponding highest reliabilities at the
closest sensor are pij = {0.59, 0.70, 0.77, 0.80, 0.83, 0.86,
0.91, 0.94, 0.98}, respectively. In each case, the final deci-
sion of each task is determined by majority voting using the
answers from the selected sensors.

We compare the accuracy in the following cases at differ-
ent SNRs:

• Select the highest p̂i{:} sensor, which is the baseline
approach. (Denoted as the Top case.)

• Select J sensors to maximize probability of success
using greedy approach. (Denoted as the SuccessProb
case.)

• Select J sensors to minimize probability that average
reliability is less than a threshold using greedy ap-
proach. (Denoted as the AvgProb-Greedy-threshold
case.)

• Select J sensors to minimize probability that average
reliability is less than a threshold using QAP. (Denoted
as the AvgProb-QAP-threshold case.)

The experimental results are shown in Fig. 4. There are
some interesting observations. First, selecting the highest es-
timated reliability sensor is not the best solution compared
with our proposed methods. Second, maximizing probabil-
ity of success achieves the highest accuracy in many cases,
SNR = {−6.51,−5.21,−2.17,−1.30, 0.00} dB. Third, min-
imizing probability that average reliability is than a threshold
also achieves competitive results, especially in the QAP for-
mulation. Moreover, QAP formulation achieves higher accu-
racy compared with the greedy approach, since it provides a
way to solve the assignment problem globally.

Fig. 4. Experimental results of different sensor selection cri-
teria. The Top case is the baseline.
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Furthermore, we use a paired-sample t-test to further ex-
amine the significance of our results [14]. We pair the results
of the SuccessProb and the Top case. The p-values at different
SNRs are shown in Table 1. Note that the highest p-value is
13.9% at SNR = −5.21 dB, and other values are less than
5%, which suggests that the SuccessProb algorithm signifi-
cantly outperforms the baseline at all noise levels (5.64% on
average) except SNR = −5.21 dB.

5. CONCLUSION

In this paper, we study opportunistic sensing for automatic
selection of acoustic sensors. We model the sensor selection
problem using crowdsourcing models under sparse reliability
constraints. We propose two optimization objective functions
with greedy approach and quadratic assignment.

There are many possibilities for extending this work. For
example, in addition to the current one-shot sensor selection
problem, we can further consider the sensor selection in a
time-varying scenario. Also, in addition to acoustic sensors,
our proposed models and algorithms can be generalized to
other unattended sensor networks.
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