M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search Yelong Shen^{*1}, Jianshu Chen^{*1}, Po-Sen Huang^{*2}, Yuqing Guo², Jianfeng Gao² *Equal Contribution, ¹Tencent AI Lab, ²Microsoft Research

Overview

- Learning to walk over a graph towards a target node given input query and a source node.
- M-Walk consists a recurrent neural network and a Monte Carlo Tree Search (MCTS).
- MCTS is combined with the RNN policy to generate \bullet trajectories with more positive rewards.
- RNN policy is updated in an off-policy manner from trajectories.
- Experiment results: learn better policies from less number of rollouts compared to policy gradient methods.
- Code: https://github.com/yelongshen/GraphWalk

Problem Setting

• Given a pair of source node and query, learn to find a target node in a graph.

Training Algorithm

Alg	orithm 1 M-Walk Training Algorithm
1:	Input: Graph \mathcal{G} ; Initial node n_S ; Query q; Target node n_T ; Maximum Path Length
	Search Number E;
2:	for episode e in $[1E]$ do
3:	Set current node $n_0 = n_S; q_0 = f_{\theta_a}(q, 0, 0, n_0)$
4:	for $t = 0 \dots T_{\max} do$
5:	Lookup from dictionary to obtain $W(s_t, a)$ and $N(s_t, a)$
6:	Select the action a_t with the maximum PUCT value:
	$a_t = \operatorname{argmax}_a \left\{ c \cdot \pi_\theta(a s_t)^\beta \frac{\sqrt{\sum_{a'} N(s_t, a')}}{1 + N(s_t, a)} + \frac{W(s_t, a)}{N(s_t, a)} \right\}$
7:	Update $q_{t+1} = f_{\theta_q}(q_t, h_{A,t}, h_{a_t,t}, n_{t+1})$
8:	if a_t is STOP then
9:	Compute estimated reward value $V_{\theta}(s_t) = Q(s_t, a_t = \text{STOP})$
10:	Add generated path p into a path list
11:	Backup along the path p to update visit count $W(s_t, a)$ and $N(s_t, a)$
12:	Break
13:	end if
14:	end for
15:	end for
16:	for each path p in the path list do
17:	Set reward $r = 1$ if the end of the path $n_t = n_T$ otherwise $r = 0$
18:	Repeatedly update the model parameters with Q-learning:
	$\theta \leftarrow \theta + \alpha \cdot \nabla_{\theta} Q_{\theta}(s_t, a_t) \times \left(r(s_t, a_t) + \gamma \max_{a'} Q_{\theta}(s_{t+1}, a') - Q_{\theta}(s_t, a_t) \right)$

19: **end for**

$$(a, a_t)$$

Experimental Results

NELL-995 Link Prediction Performance (MAP) \bullet

				-			-	
Tasks	M-Walk	PG-Walk	Q-Walk	MINERVA	DeepPath	PRA	TransE	TransR
AthletePlaysForTeam	84.7 (1.3)	80.8 (0.9)	82.6 (1.2)	82.7 (0.8)	72.1 (1.2)	54.7	62.7	67.3
AthletePlaysInLeague	97.8 (0.2)	96.0 (0.6)	96.2 (0.8)	95.2 (0.8)	92.7 (5.3)	84.1	77.3	91.2
AthleteHomeStadium	91.9 (0.1)	91.9 (0.3)	91.1 (1.3)	92.8 (0.1)	84.6 (0.8)	85.9	71.8	72.2
AthletePlaysSport	98.3 (0.1)	98.0 (0.8)	97.0 (0.2)	98.6 (0.1)	91.7 (4.1)	47.4	87.6	96.3
TeamPlaySports	88.4 (1.8)	87.4 (0.9)	78.5 (0.6)	87.5 (0.5)	69.6 (6.7)	79.1	76.1	81.4
OrgHeadquaterCity	95.0 (0.7)	94.0 (0.4)	94.0 (0.6)	94.5 (0.3)	79.0 (0.0)	81.1	62.0	65.7
WorksFor	84.2 (0.6)	84.0 (1.6)	82.7 (0.2)	82.7 (0.5)	69.9 (0.3)	68.1	67.7	69.2
BornLocation	81.2 (0.0)	82.3 (0.6)	81.4 (0.5)	78.2 (0.0)	75.5 (0.5)	66.8	71.2	81.2
PersonLeadsOrg	88.8 (0.5)	87.2 (0.5)	86.9 (0.5)	83.0 (2.6)	79.0 (1.0)	70.0	75.1	77.2
OrgHiredPerson	88.8 (0.6)	87.2 (0.4)	87.8 (0.9)	87.0 (0.3)	73.8 (1.9)	59.9	71.9	73.7
Overall	89.9	88.9	87.8	87.6	78.8	69.7	72.3	77.5
				•				

WN18RR Link Prediction Performance

	44					~ -		
Metric (%)	M-Walk	PG-Walk	Q-Walk	MINERVA	ComplEx	ConvE	DistMult	NeuralLP
HITS@1	41.4 (0.1)	39.3 (0.2)	38.2 (0.3)	35.1 (0.1)	38.5 (0.3)	39.6 (0.3)	38.4 (0.4)	37.2 (0.1)
HITS@3	44.5 (0.2)	41.9 (0.1)	40.8 (0.4)	44.5 (0.4)	43.9 (0.3)	44.7 (0.2)	42.4 (0.3)	43.4 (0.1)
MRR	43.7 (0.1)	41.3 (0.1)	40.1 (0.3)	40.9 (0.1)	42.2 (0.2)	43.3 (0.2)	41.3 (0.3)	43.5 (0.1)

Positive Reward Rate Comparison

Train Rollouts = 32

Hyperparameter and Error Analysis on WN18RR

Examples of Paths found by M-Walk

AthleteHomeStadium:
<i>Example 1</i> : athlete ernie banks $\xrightarrow{\text{AthleteHomeStadium}}$?
athlete ernie banks $\xrightarrow{\text{AthletePlaysInLeague}}$ SportsLeague
<i>Example 2</i> : coach jim zorn $\xrightarrow{\text{AthleteHomeStadium}}$?
coach jim zorn CoachWonTrophy AwardTrophyTourna
<i>Example 3</i> : athlete oliver perez $\xrightarrow{\text{AthleteHomeStadium}}$?
athlete oliver perez AthletePlaysInLeague

Microsoft Research

MCTS Comparison

Relation: WorksFor

Accuracy (%) whe	en the target is in th	e candidate set
100- M-Walk M	IINERVA ConvE	93.3
80- 80.0	77.5	
70- 63.9		-
50- 40- 39.6	44.7	50.8
HITS@1	HITS@3	HITS@10
Percentage	of Out-of-Candidate	e-Set Error
Percentage	of Out-of-Candidate	e-Set Error 93.3
Percentage 100 95 90 85 82 4	of Out-of-Candidate	e-Set Error 93.3 87.4
Percentage 100 95 90 85 82.4 80 75	of Out-of-Candidate	93.3 87.4
Percentage 100 95 90 85 82.4 80 75 70 68.7 65 60	of Out-of-Candidate	e-Set Error 93.3 87.4

ue mlb $\xrightarrow{\text{TeamPlaysInLeague}^{-1}}$ SportsTeam chicago cubs $\xrightarrow{\text{TeamHomeStadium}}$ StadiumOrEventVenue wrigley field, (True)

nament super bowl $\xrightarrow{\text{TeamWonTrophy}^{-1}}$ SportsTeam redskins $\xrightarrow{\text{TeamHomeStadium}}$ StadiumOrEventVenue fedex field, (True)

 $\xrightarrow{\text{TeamPlaysInLeague}^{-1}} \text{SportsTeam chicago cubs} \xrightarrow{\text{TeamHomeStadium}} \text{StadiumOrEventVenue wrigley field, (False)}$ gue mlb -