
• Use fully connected neural networks to encode !" along 
with other quantities         and           into a high-level 
embedding vectors ℎ$,", ℎ&'(," , … , ℎ&*+ ,", ℎ,,"

• Mapped them into the Q-value, the policy and the state 
value at different output units.

• Jointly train the RNN to model -. and /.

M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search
Yelong Shen*1, Jianshu Chen*1, Po-Sen Huang*2, Yuqing Guo 2, Jianfeng Gao 2

*Equal Contribution, 1Tencent AI Lab, 2Microsoft Research
Overview
• Learning to walk over a graph towards a target node given 

input query and a source node.
• M-Walk consists a recurrent neural network and a Monte 

Carlo Tree Search (MCTS).
• MCTS is combined with the RNN policy to generate 

trajectories with more positive rewards.
• RNN policy is updated in an off-policy manner from 

trajectories.
• Experiment results: learn better policies from less number 

of rollouts compared to policy gradient methods.
• Code: https://github.com/yelongshen/GraphWalk

Experimental Results

Problem Setting

Hyperparameter and Error Analysis on WN18RR

• Given a pair of source node and query, learn to find a 
target node in a graph. 

Model
• Markov decision process

• The Monte Carlo Tree Search in M-Walk. The path is a 
trajectory generated by MCTS using the PUCT (Rosin 11, 
Silver 17)

• NELL-995 Link Prediction Performance (MAP)

Examples of Paths found by M-Walk

Training Algorithm
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Positive Reward Rate Comparison

Train Rollouts = 32 MCTS Comparison Relation: WorksFor

• WN18RR Link Prediction Performance

• Iterative policy improvement

A Derivation of the recursion for qt

Recalling the definition qt , st�1 [ {at�1, nt} and using the recursion (1), we have

qt+1
(a)
= st [ {at, nt+1}
(b)
= st�1 [ {at�1, nt, Ent ,Nnt} [ {at, nt+1}
(c)
= qt [ {Ent ,Nnt , at, nt+1}

where step (a) uses the definition of qt+1, step (b) substitutes the recursion (1), and step (c) uses the
definition of qt.

B Algorithm Implementation Details

The detailed algorithm of M-Walk is described in Algorithm 1.

Algorithm 1 M-Walk Training Algorithm
1: Input: Graph G; Initial node nS ; Query q; Target node nT ; Maximum Path Length Tmax; MCTS

Search Number E;
2: for episode e in [1..E] do

3: Set current node n0 = nS ; q0 = f✓q (q, 0, 0, n0)

4: for t = 0 . . . Tmax do

5: Lookup from dictionary to obtain W (st, a) and N(st, a)
6: Select the action at with the maximum PUCT value:

at = argmaxa

(
c·⇡✓(a|st)�

pP
a0 N(st, a0)

1+N(st, a)
+
W (st, a)

N(st, a)

)

7: Update qt+1 = f✓q (qt, hA,t, hat,t, nt+1)

8: if at is STOP then

9: Compute estimated reward value V✓(st) = Q(st, at = STOP)

10: Add generated path p into a path list
11: Backup along the path p to update visit count W (st, a) and N(st, a)
12: Break

13: end if

14: end for

15: end for

16: for each path p in the path list do

17: Set reward r = 1 if the end of the path nt = nT otherwise r = 0

18: Repeatedly update the model parameters with Q-learning:

✓  ✓ + ↵ ·r✓Q✓(st, at)⇥
⇣
r(st, at) + �max

a0
Q✓(st+1, a

0
)�Q✓(st, at)

⌘

19: end for

B.1 MCTS implementation

In the MCTS implementation, we maintain a lookup table to record values W (st, a) and N(st, a) for
each visited state-action pair. The state st in the graph walk problem contains all the information
along the traversal path, and nt is the node at the current step t. We assign an index ia to each
candidate action a from nt, indicating that a is the ia-th action of the node nt. Thus, the state st
can be encoded as a path string Pst = (q, n0, ia0 , n1, ia1 , . . . , nt). We build a dictionary D using the
path string as a key, and we record W (st, a) and N(st, a) as values in D. In the backup stage, the
W (st, a) and N(st, a) values are updated for each state-action pair along with the traversal path in
MCTS:

N(st, a) = N(st, a) + �T�t
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(a) An example of Knowledge Base Completion (b) The corresponding Markov Decision Process

Figure 1: An example of Knowledge Base Completion and its formulation as a Markov Decision Process. (a)
We want to identify the target node nT = USA for a given pair of query q = Citizenship and source node
nS = Obama. (b) The activated circles and edges (in black lines) denote all the observed information up to time
t (i.e., the state st). The double circle denotes the current node nt, while Ent and Nnt denote the edges and
nodes connected to the current node.

of samples like (nS , q, nT ). In this work, we model f(G, nS , q) by means of a graph-walking agent
that intelligently navigates through a subset of nodes in the graph from nS towards nT . Since nT is
unknown, the problem cannot be solved by conventional search algorithms such as A⇤-search [11],
which seeks to find paths between the given source and target nodes. Instead, the agent needs to learn
its search policy from the training dataset so that, after training is complete, the agent knows how to
walk over the graph to reach the correct target node nT for an unseen pair of (nS , q). Moreover, each
training sample is in the form of “(source node, query, target node)”, and there is no intermediate
supervision for the correct search path. Instead, the agent receives only delayed evaluative feedback:
when the agent correctly (or incorrectly) predicts the target node in the training set, the agent will
receive a positive (or zero) reward. For this reason, we formulate the problem as a Markov decision
process (MDP) and train the agent by reinforcement learning (RL) [27].

The problem poses two major challenges. Firstly, since the state of the MDP is the entire trajectory,
reaching a correct decision usually requires not just the query, but also the entire history of traversed
nodes. For the KBC example in Figure 1(a), having access to the current node nt = Hawaii alone is
not sufficient to know that the best action is moving to nt+1 = USA. Instead, the agent must track
the entire history, including the input query q = Citizenship, to reach this decision. Secondly,
the reward is sparse, being received only at the end of a search path, for instance, after correctly
predicting nT =USA.

In this paper, we develop a neural graph-walking agent, named M-Walk, that effectively addresses
these two challenges. First, M-Walk uses a novel recurrent neural network (RNN) architecture
to encode the entire history of the trajectory into a vector representation, which is further used to
model the policy and the Q-function. Second, to address the challenge of sparse rewards, M-Walk
exploits the fact that the MDP transition model is known and deterministic.2 Specifically, it combines
Monte Carlo Tree Search (MCTS) with the RNN to generate trajectories that obtain significantly
more positive rewards than using the RNN policy alone. These trajectories can be viewed as being
generated from an improved version of the RNN policy. But while these trajectories can improve
the RNN policy, their off-policy nature prevents them from being leveraged by policy gradient RL
methods. To solve this problem, we design a structure for sharing parameters between the Q-value
network and the RNN’s policy network. This allows the policy network to be indirectly improved
through Q-learning over the off-policy trajectories. Our method is in sharp contrast to existing
RL-based methods for KBC, which use a policy gradients (REINFORCE) method [36] and usually
require a large number of rollouts to obtain a trajectory with a positive reward, especially in the early
stages of learning [9, 37, 14]. Experimental results on several benchmarks, including a synthetic
task and several real-world KBC tasks, show that our approach learns better policies than previous
RL-based methods and traditional KBC methods.

The rest of the paper is organized as follows: Section 3 develops the M-Walk agent, including the
model architecture, the training and testing algorithms.3 Experimental results are presented in Section
4. Finally, we discuss related work in Section 5 and conclude the paper in Section 6.

2Whenever the agent takes an action, by selecting an edge connected to a next node, the identity of the next
node (which the environment will transition to) is already known. Details can be found in Section 2.

3The code of this paper is available at: https://github.com/yelongshen/GraphWalk
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Table 1: The MAP scores (%) on NELL995 task, where we report RL-based methods in terms of “mean
(standard deviation)”. PG-Walk and Q-Walk are methods we created just for the ablation study.

Tasks M-Walk PG-Walk Q-Walk MINERVA DeepPath PRA TransE TransR
AthletePlaysForTeam 84.7 (1.3) 80.8 (0.9) 82.6 (1.2) 82.7 (0.8) 72.1 (1.2) 54.7 62.7 67.3
AthletePlaysInLeague 97.8 (0.2) 96.0 (0.6) 96.2 (0.8) 95.2 (0.8) 92.7 (5.3) 84.1 77.3 91.2
AthleteHomeStadium 91.9 (0.1) 91.9 (0.3) 91.1 (1.3) 92.8 (0.1) 84.6 (0.8) 85.9 71.8 72.2

AthletePlaysSport 98.3 (0.1) 98.0 (0.8) 97.0 (0.2) 98.6 (0.1) 91.7 (4.1) 47.4 87.6 96.3
TeamPlaySports 88.4 (1.8) 87.4 (0.9) 78.5 (0.6) 87.5 (0.5) 69.6 (6.7) 79.1 76.1 81.4

OrgHeadquaterCity 95.0 (0.7) 94.0 (0.4) 94.0 (0.6) 94.5 (0.3) 79.0 (0.0) 81.1 62.0 65.7
WorksFor 84.2 (0.6) 84.0 (1.6) 82.7 (0.2) 82.7 (0.5) 69.9 (0.3) 68.1 67.7 69.2

BornLocation 81.2 (0.0) 82.3 (0.6) 81.4 (0.5) 78.2 (0.0) 75.5 (0.5) 66.8 71.2 81.2
PersonLeadsOrg 88.8 (0.5) 87.2 (0.5) 86.9 (0.5) 83.0 (2.6) 79.0 (1.0) 70.0 75.1 77.2
OrgHiredPerson 88.8 (0.6) 87.2 (0.4) 87.8 (0.9) 87.0 (0.3) 73.8 (1.9) 59.9 71.9 73.7

Overall 89.9 88.9 87.8 87.6 78.8 69.7 72.3 77.5

Table 2: The results on the WN18RR dataset, in the form of “mean (standard deviation)”.
Metric (%) M-Walk PG-Walk Q-Walk MINERVA ComplEx ConvE DistMult NeuralLP
HITS@1 41.4 (0.1) 39.3 (0.2) 38.2 (0.3) 35.1 (0.1) 38.5 (0.3) 39.6 (0.3) 38.4 (0.4) 37.2 (0.1)
HITS@3 44.5 (0.2) 41.9 (0.1) 40.8 (0.4) 44.5 (0.4) 43.9 (0.3) 44.7 (0.2) 42.4 (0.3) 43.4 (0.1)
MRR 43.7 (0.1) 41.3 (0.1) 40.1 (0.3) 40.9 (0.1) 42.2 (0.2) 43.3 (0.2) 41.3 (0.3) 43.5 (0.1)

4.2 Analysis of M-Walk

We performed extensive experimental analysis to understand the proposed M-Walk algorithm, in-
cluding (i) the contributions of different components, (ii) its ability to overcome sparse rewards, (iii)
hyperparameter analysis, (iv) its strengths and weaknesses compared to traditional KBC methods,
and (v) its running time. First, we used ablation studies to analyze the contributions of different
components in M-Walk. To understand the contribution of the proposed neural architecture in M-
Walk, we created a method, PG-Walk, which uses the same neural architecture as M-Walk but with
the same training (PG) and testing (beam search) algorithms as MINERVA [5]. We observed that
the novel neural architecture of M-Walk contributes an overall 1% gain relative to MINERVA on
NELL995, and it is still 1% worse than M-Walk, which uses MCTS for training and testing. To
further understand the contribution of MCTS, we created another method, Q-Walk, which uses the
same model architecture as M-Walk except that it is trained by Q-learning only without MCTS. Note
that this lost about 2% in overall performance on NELL995. We observed similar trends on WN18RR.
In addition, we also analyze the importance of MCTS in the testing stage in Appendix C.1.

Second, we analyze the ability of M-Walk to overcome the sparse-reward problem. In Figure 4, we
show the positive reward rate (i.e., the percentage of trajectories with positive reward during training)
on the Three Glass Puzzle task and the NELL995 tasks. Compared to the policy gradient method (PG-
Walk), and Q-learning method (Q-Walk) methods under the same model architecture, M-Walk with
MCTS is able to generate trajectories with more positive rewards, and this continues to improve
as training progresses. This confirms our motivation of using MCTS to generate higher-quality
trajectories to alleviate the sparse-reward problem in graph walking.

Third, we analyze the performance of M-Walk under different numbers of MCTS rollout simulations
and different search horizons on WN18NN dataset, with results shown in Figure 5(a). We observe
that the model is less sensitive to search horizon and more sensitive to the number of MCTS rollouts.
Finally, we analyze the strengths and weaknesses of M-Walk relative to traditional methods on the
WN18NN dataset. The first question is how M-Walk performs on reasoning paths of different lengths
compared to baselines. To answer this, we analyze the HITS@1 accuracy against ConvE in Fig. 5(b).
We categorize each test example using the BFS (breadth-first search) steps from the query entity to
the target entity (-1 means not reachable). We observe that M-Walk outperforms the strong baseline
ConvE by 4.6–10.9% in samples that require 2 or 3 steps, while it is nearly on par for paths of length
one. Therefore, M-Walk does better at reasoning over longer paths than ConvE. Another question
is what are the major types of errors made by M-Walk. Recall that M-Walk only walks through a
subset of the graph and ranks a subset of candidate nodes (e.g., MCTS produces about 20–60 unique
candidates on WN18RR). When the ground truth is not in the candidate set, M-Walk always makes
mistakes. To examine this effect, we show in Figure 5(c)-top the HITS@K accuracies when the
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Table 4: Examples of reasoning paths found by M-Walk on the NELL-995 dataset for the relation
“AthleteHomeStadium”. True (False) means the prediction is correct (wrong).

AthleteHomeStadium:

Example 1: athlete ernie banks
AthleteHomeStadium����������!?

athlete ernie banks
AthletePlaysInLeague����������! SportsLeague mlb

TeamPlaysInLeague�1

�����������! SportsTeam chicago cubs
TeamHomeStadium���������! StadiumOrEventVenue wrigley field, (True)

Example 2: coach jim zorn
AthleteHomeStadium����������!?

coach jim zorn
CoachWonTrophy��������! AwardTrophyTournament super bowl

TeamWonTrophy�1

����������! SportsTeam redskins
TeamHomeStadium���������! StadiumOrEventVenue fedex field, (True)

Example 3: athlete oliver perez
AthleteHomeStadium����������!?

athlete oliver perez
AthletePlaysInLeague����������! SportsLeague mlb

TeamPlaysInLeague�1

�����������! SportsTeam chicago cubs
TeamHomeStadium���������! StadiumOrEventVenue wrigley field, (False)

policies to be learned from raw data (e.g., images) in an end-to-end manner. Our work also aligns
with this direction. Furthermore, the idea of using an RNN to encode the history of observations
also appeared in [12, 35]. The combination of model-based and model-free information in our work
shares the same spirit as [24, 25, 26, 34]. Among them, the most relevant are [24, 25], which combine
MCTS with neural policy and value functions to achieve superhuman performance on Go. Different
from our work, the policy and the value networks in [24] are trained separately without the help
of MCTS, and are only used to help MCTS after being trained. The work [25] uses a new policy
iteration method that combines the neural policy and value functions with MCTS during training.
However, the method in [25] improves the policy network from the MCTS probabilities of the moves,
while our method improves the policy from the trajectories generated by MCTS. Note that the former
is constructed from the visit counts of all the edges connected to the MCTS root node; it only uses
information near the root node to improve the policy. By contrast, we improve the policy by learning
from the trajectories generated by MCTS, using information over the entire MCTS search tree.

Knowledge Base Completion In KBC tasks, early work [2] focused on learning vector represen-
tations of entities and relations. Recent approaches have demonstrated limitations of these prior
approaches: they suffer from cascading errors when dealing with compositional (multi-step) re-
lationships [10]. Hence, recent works [8, 18, 10, 15, 30] have proposed approaches for injecting
multi-step paths such as random walks through sequences of triples during training, further improving
performance on KBC tasks. IRN [23] and Neural LP [40] explore multi-step relations by using an
RNN controller with attention over an external memory. Compared to RL-based approaches, it is
hard to interpret the traversal paths, and these models can be computationally expensive to access the
entire graph in memory [23]. Two recent works, DeepPath [38] and MINERVA [5], use RL-based
approaches to explore paths in knowledge graphs. DeepPath requires target entity information to
be in the state of the RL agent, and cannot be applied to tasks where the target entity is unknown.
MINERVA [5] uses a policy gradient method to explore paths during training and test. Our proposed
model further exploits state transition information by integrating the MCTS algorithm. Empirically,
our proposed algorithm outperforms both DeepPath and MINERVA in the KBC benchmarks.11

6 Conclusion and Discussion

We developed an RL-agent (M-Walk) that learns to walk over a graph towards a desired target node
for given input query and source nodes. Specifically, we proposed a novel neural architecture that
encodes the state into a vector representation, and maps it to Q-values and a policy. To learn from
sparse rewards, we propose a new reinforcement learning algorithm, which alternates between an
MCTS trajectory-generation step and a policy-improvement step, to iteratively refine the policy. At
test time, the learned networks are combined with MCTS to search for the target node. Experimental
results on several benchmarks demonstrate that our method learns better policies than other baseline
methods, including RL-based and traditional methods on KBC tasks. Furthermore, we also performed
extensive experimental analysis to understand M-Walk. We found that our method is more accurate
when the ground truth is in the candidate set. We also found that the out-of-candidate-set error is the
main type of error made by M-Walk. Therefore, in future work, we intend to improve this method by
reducing such out-of-candidate-set errors.

11A preliminary version of M-Walk with limited experiments was reported in the workshop paper [22].
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