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Abstract

In this paper, we address the problem of object
class recognition via observations from actively selected
views/modalities/features under limited resource budgets. A
Partially Observable Markov Decision Process (POMDP)
is employed to find optimal sensing and recognition actions
with the goal of long-term classification accuracy. Hetero-
geneous resource constraints — such as motion, number of
measurements and bandwidth — are explicitly modeled in
the state variable, and a prohibitively high penalty is used to
prevent the violation of any resource constraint. To improve
recognition performance, we further incorporate discrim-
inative classification models with POMDP, and customize
the reward function and observation model correspond-
ingly. The proposed model is validated on several data
sets for multi-view, multi-modal vehicle classification and
multi-view face recognition, and demonstrates improvement
in both recognition and resource management over greedy
methods and previous POMDP formulations.

1. Introduction

In real-time object recognition applications, it is of-
ten preferred to sequentially obtain the most informative
sensory data in order to reduce the current recognition
uncertainty. Such data acquisition scheme, generally called
active sensing [14], is useful especially when a huge amount
of data are available from various sensors and modalities
while we do not have the luxury to capture and process all
of them.

Most early works on recognition with active sensing
rely on a greedy strategy that selects the next best sensor
based on some information theoretic criteria. For example,
sensor scheduling algorithms have been proposed which

greedily select the view angle to observe object that leads
to the maximum entropy reduction in class hypothesis [3]
or maximum expected mutual information between the
class label and observation [5]. Unfortunately, the sensors
selected greedily may not be optimal for long-term recogni-
tion. Moreover, entropy-based criteria usually involve high
computation and are not robust to model estimation error.

On the other hand, Partially Observable Markov De-
cision Process (POMDP), which can deal with the active
recognition problem on an arbitrarily long time horizon, has
been widely studied and applied in gesture recognition [4],
mine detection [11] and image object detection [12]. Infor-
mation measure on the class posterior can be used to guide
the policy learning in POMDP [16], and reinforcement
learning algorithms are employed to learn object model and
planning policy simultaneously [16, 12, 13]. In POMDP,
the objective is represented by a single reward function,
which makes it difficult to balance between improving
recognition accuracy and preserving sensing resources. Al-
so, conventional POMDP has a generative formulation
which limits its recognition performance especially for
high-dimensional multimedia data with insufficient training
samples.

In this paper, we address the problem of object recogni-
tion via active sensing with limited budgets on motion and
sensing resources. A novel POMDP formulation is pro-
posed that incorporates heterogenous resource constraints
and discriminative classification models. The consump-
tion of each resource is explicitly monitored in our state
variable, and a prohibitive penalty is used to prevent any
resource depletion so that policy learning can focus on
the recognition task. In addition, by introducing a single
recognition action, we decouple the learning of classifi-
cation model and sensing policy so that more powerful
discriminative classifiers can be used within the POMDP



framework. Our reward function and observation model are
also customized for classification purpose correspondingly.
The proposed model is simple but effective. It is applied
to multi-view, multi-modal vehicle classification and multi-
view face recognition on several data sets, and outperforms
greedy methods and previous POMDP formulations in both
recognition accuracy and resource management.

The remainder of this paper is organized as follows.
After reviewing related work on POMDP and active recog-
nition in Sec. 2, we present our models with resource con-
straints and discriminative classifiers in Sec. 3. Extensive
evaluation of the proposed method is reported in Sec. 4.
Sec. 5 concludes the paper.

2. POMDP for Active Recognition

A POMDRP is defined by a tuple <S,0, A, T,0, R>,
where S, O and A denote a finite set of discrete states,
observations and actions, respectively. The state S is
modeled as a Markov process, whose transition from time ¢
to t + 1 driven by action A taken at ¢ follows the transition
distribution:

T(s,a,8") = p(Siy1 = §'|S; = s, Ay = a). (1)

The state S is hidden, and its value can only be inferred
from its observation O according to the observation distri-
bution:

O(Sl, CL,O) = p(0t+1 = O|At = a, St+1 = S,). (2)

An action a taken in a particular state s results in a reward
which is described by a function R(s,a). Our goal is
to find a policy that decides what is the optimal action
to take based on the belief in current state so that max-
imum is achieved for the expected accumulated reward:
E[ZtK;Ol’th(St,At)], where K is the length of time
horizon to consider, and y€(0, 1] is the discount factor for
future rewards. A more detailed description of POMDP and
algorithms to solve for the optimal policy can be found in
[15].

The problem of recognition with active perception natu-
rally fits into the framework of POMDP, and existing work
can be found in [4, 2, 11, 12]. In this problem, we want
to recognize the class category X of a target, which is
modeled as part of the hidden state S. To achieve this
goal, observations {O;} of the target with different sens-
ing parameters are sequentially obtained using appropriate
sensing actions { A;} until a classification action predicts a
class label for the target. A positive reward is given if the
target is correctly labeled, and a negative reward is given
otherwise. Additional rewards can be assigned to each
sensing action to model sensing costs [2]. A good policy
will select actions dynamically based on the current belief
in X inferred from previous observations, either making

another observation using the most informative sensor or
making a final classification with the most likely class.

Most existing POMDP formulations for active recogni-
tion, unfortunately, suffer from two problems. First, the
objectives to improve recognition performance and preserve
sensing resources are wrapped in a single reward function,
which makes it difficult to balance their relative importance.
The issue becomes even more complex if we have multiple
heterogenous resources which cannot be compared on the
same scale. Second, due to its generative nature and Markov
property, POMDP mainly relies on naive Bayesian classifier
for recognition task, which usually gives unsatisfactory
results compared with more advanced discriminative clas-
sifiers. We will address these two problems by introducing
novel POMDP formulations in the next section.

3. Proposed Models

We consider an active recognition scenario in which a
mobile sensing platform observes a target from different
view angles using different sensing parameters including
sensor modality, feature extractor, etc. Therefore, navi-
gation, sensing and recognition are all considered in our
POMDP models, whose basic components are specified in
the following.

The state S is defined to include all the combinations
of target class label X and sensing platform position Z,
which are all discrete variables. Here we only consider the
finite number of positions where observations can be taken
as the possible values for Z. However, the motion planning
between different Z’s is done in the continuous space using
a separate model as will be described in Sec. 4.2. In
addition, a special terminal state st is used to represent the
state after recognition is done.

The action A can be divided into three categories. A
move action a€A,, drives the sensing platform to the spec-
ified view position where the target can be observed from
a particular view angle. An observe action a€.A, makes
observation of target using the specified sensing parameter
from the current view position. A classify action a€A.
predicts label X with the specified class.

Since the class label X never changes and we assume
perfect navigation control over position Z, the transition
model T'(s,a,s’) is actually deterministic. It is designed
according to the three action types as

if acA,,,2'=x,2'=2,
if acA,,s'=s
: /__ Y
, if a€A, s'=sr
, otherwise

T(s,a,s) = 3)

O = =

where z, is the position specified by move action a. Unless
otherwise noted, we use z(z’) and z(2’) to denote the class
label and view position represented by s(s”), respectively.



The observation O consists of quantized feature values
as well as a dummy observation oy4. For a€A,, the obser-
vation distribution O(s’, a,0) assigns a probability to any
0704 according to the likelihood that o is generated from
class 2’ under view position z’ with the sensing parameter
specified by a. For other actions, only o4 will be observed.

The incorporation of multiple resource constraints and
the design of reward function R(s, a) will be detailed in the
next.

3.1. POMDP with Resource Constraints

In practice, we often have limited budgets to execute
either motion or sensing actions. A straightforward way
[2] to take this into consideration in POMDP is to have
the reward function assign a cost (negative reward) of
—a;-n to any action that consumes the ¢-th resource by an
amount of n. Let R. denote the expected reward for the
final classification action, and we can express the goal of
POMDP as

max R, — a1 -ni —ag-ng — ... @

where n; is the total amount of consumption in the i-
th resource. Unfortunately, there is no explicit way to
balance the relative importance between recognition reward
R, and resource cost «;. Moreover, if the recourses are of
heterogenous types, such as navigation distance and sensing
energy, making trade-off between all the a;’s becomes
another question.

Instead of solving the resource-regularized problem (4),
we propose to use a resource-constrained objective:

max R. s.t.ny < fB1, na < fa, ..., (5)

where (; is the budget for the i-th resource which limits the
total consumption in this resource. Since 3; has a specific
physical meaning, its value is easier to determine than «;.
Eq. (5) also decouples the recognition objective from all the
resource constraints so that the policy learning for POMDP
becomes more focused on the recognition task.

To implement the objective in (5), we propose POMDP
with Resource Constraints (POMDP-RC) which extends
our basic formulation discussed earlier in the following
ways.

First, we augment the state space S with a set of variables
{B;} where each B; keeps track of the remaining budget for
the ¢-th resource. B; is initialized to the total budget f3;.

In the transition model T'(s, a, s’), when a move action
a€A,, or an observe action a€ A, is taken, the amount of
consumption in the i-th resource will be deducted from the
corresponding remaining budget b} in s’. If the deduction
leads to a negative b} (the resource is used up), we set s’ to
be the terminal state s.

To prevent any resource from being depleted, the reward
function R(s, a) is designed to assign a prohibitive penalty

rp<0 in such cases. When a classify action acA. is
taken, a recognition reward r.>0 will be assigned if the
class prediction is correct, and zero reward will be given
otherwise. Specifically, our reward function is defined as:

rp, if agA., T(s,a,s7)=1
R(s,a) =< 1 ifa€A.,z,=2 , (6)
0, otherwise

where x, is the class predicted by the classify action a. It
can be seen that in POMDP-RC a nonzero reward will be
given only when the terminal state is reached, implying that
a long-term goal on recognition performance is emphasized.

3.2. POMDP with Discriminative Classifier

In conventional POMDP, the class label X is inferred
from all the observations {O;} through the observation
model. Since each observation O, is conditionally indepen-
dent given the state Sy, the maximum a posteriori estimation
of X is essentially the same as the Naive Bayesian classifi-
cation:

& = arg m?XP(X:C) Hp(OtJrl'X:Ca Ziv1, Ay). (1)
’ t

When the observation comes from a high-dimensional s-
pace, e.g. image and audio, a good estimation of the obser-
vation likelihood in (7) requires a large number of samples
which are often unavailable in real applications. In addition,
the strong independency assumption used in the Naive
Bayesian classifier leads to the loss of high-order statistics
which may contain useful discriminative information.

To address this problem, we propose a POMDP with Dis-
criminative Classifier (POMDP-DC) in which recognition
decision is made by an external classifier instead of by a
POMDP policy. Discriminative classifiers, such as Support
Vector Machine (SVM) and logistic regression, show better
generalization capability than naive Bayesian method in
many cases. Suppose a classifier is trained independently
for each combination of view Z and sensing parameter A,
and it assigns a score s. z 4(O) to class ¢ when observation
O is acquired. The final recognition can be done by fusing
the scores from all the classifiers:

% = arg max Z Se,Zv1, A (Ot41)- (8)
¢

High order statistics between multiple observations can also
be incorporated by training classifiers in the joint observa-
tion space:

T = argm?xsc’{Zt}_,{At}({Ot}), 9)

where s 7,1,(4,) denotes the classifier trained on the joint
space of observations under view/sensory combinations



{(Z¢4+1, At)}. To implement (8) and (9), we further extend
POMDP-RC as discussed below. We notice the recent
work in [12, 13] has a similar idea to integrate external
classifier with Markov Decision Process (MDP), but with
the goal of anytime performance instead of the accuracy
upon termination.

In POMDP-DC, only one classify action is defined in
A., which is used to stop sensing and make recognition
according to (8) or (9).

Since the goal of POMDP-DC is to select the best views
and sensing parameters for classification using an external
classifier, the reward function R(s,a) for classify action,
inspired by the objective of SVM classifier, is changed
to maximize the classification score margin between the
correct class x and any other class c:

R(s,a)

= min [min(d, s, —
c#x

sc)], a€Ae, (10

where 6 > 0 is the minimum required margin, and s, is the
total score for class ¢ defined by (8) or (9).

Eq. (9) only enables modeling high-order statistics for
the classifier. Such information can also be utilized in
POMDP-DC by introducing additional observe actions to
A,, each of which can acquire more than one observation,
or a meta-observation, at once with different sensing pa-
rameters from the current view position. The observation
space O and distribution O(s’, a,0) are augmented corre-
spondingly, and the resources to obtain a meta-observation
are aggregated and deducted from state s’ in the transition
model T'(s, a, s').

Lastly, we want to note that although there seem to
be many variables included in our model, the only thing
unknown in state S is the class label X, and all the other
variables can either be observed or transit deterministically.
This ensures our model can be solved efficiently.

4. Experiments
4.1. Data Sets and Implementations

The proposed POMDP-RC and POMDP-DC models are
tested on three data sets in this section.

The first two data sets, MSTAR [17] and Civilian Ve-
hicle Domes (CVDOME) [8], are both multi-view radar
image sets for vehicle classification. The MSTAR contains
airborne X-band Synthetic Aperture Radar (SAR) images
for 10 classes of military vehicles, with sample images
shown in Fig. 1. The vehicles were captured from various
angles. 4785 images with depression angles 17° and 30° are
used for training, and 4351 images with depression angles
15° and 45° are used for testing. The azimuth angles are
quantized into 12 discrete values as if the image could be
acquired from one of the 12 view positions. 12 images
from the same class but with different views are randomly

Figure 1. Sample images for 5 out of 10 classes in the MSTAR data
set. First row shows the illustrative real life images and second row
shows the SAR images from the data set.

Figure 2. The image synthesis model (left), sample image (center),
and acoustic attenuation model (right) for the CVDOME data set.
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Figure 3. Sample face images of one subject under 13 poses
(indexed below) in the Multi-Pie data set.

selected and combined as a training/testing instance, and
each instance is also assigned with an initial view position.
The same approach to generate sample instances is used for
other data sets unless otherwise stated.

The CVDOME contains simulated X-band scattering
images for 8 classes of civilian vehicles, with simulation
layout and a sample image shown in Fig. 2. The azimuth
angles of vehicles are quantized into 6 values. The images
for each class under each view are randomly divided into
70 images for training and 30 images for testing. We
also extend CVDOME with audio data for multi-modal
sensor selection by collecting the engine sounds for the 8
vehicle classes from the Youtube. The sounds are attenuated
differently in 6 view directions according to the vehicle
shapes (illustrated on the right of Fig. 2).

We also test on the CMU Multi-Pie data set [10] for
multi-view face recognition. There are 15480 images of
129 subjects collected in 3 sessions for training, and 5160
images in another session for testing. Face images with 13
poses are used as data collected from 13 different views,
shown in Fig. 3. The images of one subject in one session
under one illumination are combined as a sample instance.

In all the experiments, we use the quantized PCA pro-
jections of raw pixels and Mel-Frequency Cepstral Coef-
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Figure 4. (a) The layout of view positions along a circle centered
at the target location. The image plotted at each view point
corresponds to an observation of the target at the view angle. (b)
The Dubins curves for an airplane to travel from one view point to
two other view points.
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Table 1. Geometry settings for three scenes.
scene parameter S1 S2 S3
target range 4,350 800 2,000
straight line length 234 234 234
turning radius 500 1000 800
total distance || 15,000 35,000 20,000

Table 2. Recognition accuracies (%) on the MSTAR data set under
three scene settings.
method S1 S2 S3
Infor [5] || 57.6 87.0 79.4
Nearest || 77.5 80.0 82.2
Infor+Nearest || 72.8 86.3 84.4
POMDRP [2] || 81.9 89.6 84.0
POMDP-RC || 86.7 90.9 88.2

ficients (MFCCs) as the observations from visual sensors
and acoustic sensors, respectively. In vehicle classifications,
20-dimensional PCA and 8-level quantization are used. In
the more challenging face recognition task, 50-dimensional
PCA and 1024-level quantization are used.

An efficient Monte-Carlo Value Iteration (MCVI) algo-
rithm [1] is used here to find an approximated solution
for POMDP. With 10,000 particles, MCVI can typically
learn a satisfactory policy around 1 or 2 hours on a server
with 16 Xeon 2.40GHz cores. The policy is learned in a
tree structure which traverses between state beliefs upon
different observations. The rewards of r,= — 5, r.=10 and
discount factor y=1 are found to work well in general cases.
SVM classifiers are used for POMDP-DC, which are trained
with the LibLinear package [9].

4.2. Evaluation of POMDP-RC

We first evaluate the performance of POMDP-RC on
multi-view vehicle image classification with constrained
motion and sensing resources. The scenario is illustrated
in Fig. 4 where a mobile agent can navigate and observe the
target from several view positions evenly located on a circle

Table 3. Recognition accuracies (%) on the CVDOME image data
set under three scene settings.
method S1 S2 S3
Infor [5] || 78.1 83.3 74.5
Nearest || 88.5 776 774
Infor+Nearest || 88.8 80.5 804
POMDP [2] || 87.8 84.3 80.9
POMDP-RC || 90.7 84.7 833

centered at the target. The agent travels between two view
positions with the shortest trajectory defined by Dubins
curve [7], and move along a straight line when acquiring
the SAR image to form a synthetic aperture. At each view
position, the agent can observe one dimension of the PCA
feature in a way similar to compressive sensing [6]. The
total traveling distance and total number of observations
are the resources under budget control. We consider three
scenes (S1, S2, S3) with different geometric settings and
total distance constraints as summarized in Table 1. The
total observations are constrained not to exceed 12 in all the
scenes.

Our POMDP-RC is compared on the two vehicle da-
ta sets with several baseline methods including: “Infor”
[5], a greedy approach based on information measure;
“Nearest” which always observes the nearest view first;
“Infor+Nearest”, a weighted combination of the previous
two; and POMDP [2] with a conventional formulation.
From Table 2 and 3, we can see most baseline methods
can perform well in some scenes but fails in others. On
the contrary, POMDP-RC can adapt its strategy according
to available resource budgets, and therefore achieves the
highest accuracies in all the cases.

We further investigate multi-view, multi-modal classifi-
cation with the audio-visual CVDOME data. In this experi-
ment, we assume the agent can choose to obtain each obser-
vation from either an audio or a visual sensor. Generally,
images contain more information about target class than
audio data but also consume higher memory and bandwidth.
We further assume each audio(visual) observation takes
1(4) units of memory respectively, and the system has a
total of 8 units available. The geometric settings are the
same as in S2. Table 4 gives the performance comparison
between different methods, including “Lowest mem” which
always selects the memory-efficient audio sensors from the
nearest view. The first column shows POMDP-RC has the
highest accuracy, and the second and third columns show
that POMDP-RC makes good use of available resources in
the sense that the average remaining budgets at the time
recognition is done are low for both memory (rm mem)
and distance (rm dist). The last column shows the average
number of observations made with audio and visual sensors.
POMDP-RC makes only one memory-costly visual obser-
vation and allocates the remaining memory for more audio



Table 4. Recognition accuracies (%), remaining resources and
observation allocations on the audio-visual CVDOME data set.

method acc rm mem rm dist f#obs
(a+v)
Lowest mem 72.6 3.00 2814.6  5.00+0.00
Infor [5] 70.0 0.28 12699.4  0.78+1.74
Nearest || 73.1 0.00 6461.0 4.00+1.00
POMDP [2] 76.0 1.61 1896.6  2.39+1.00
POMDP-RC || 77.9 0.24 1640.3  3.76+1.00

Table 5. Recognition accuracies (%) and average number of obser-
vations on the 3-class toy data with different quantization schemes.
quantization acc  #obs
1-bit uniform || 33.65 6
2-bit uniform || 63.51 3
3-bit uniform || 83.33 2
POMDP-RC adaptive || 92.57 3.8

observations.

POMDP-RC can also be used for adaptive quantization
when observation comes from continuous features, which is
demonstrated below through a synthetic example in Fig. 5.
As many POMDP solvers work on discrete observation
O, uniform quantization is often applied to the features as
preprocessing. However, observations useful for discrimi-
nating different classes may come from a small range (e.g.,
the left part of the 1-D distributions in Fig. 5). In this
way, a very small quantization step has to be used in a
uniform quantizer in order to capture all the discriminative
information (e.g., we have to use the 3-bit uniform quantizer
shown in the top middle of Fig. 5 to distinguish all the three
classes).

This problem can be solved by introducing quantization
actions A, in POMDP-RC, which specify all kinds of
quantization functions with different quantization levels.
In this example, we assume a limited sensing bandwidth
is imposed and there are only 6 bits available to encode
the quantized observations. We use POMDP-RC to select
the quantization action that both requires very few bits to
encode and preserves discriminative information as well (as
shown on the right of Fig. 5). With those learned quantizers,
POMDP-RC can make multiple informative observations
and achieves a good recognition result. The accuracy of
adaptive quantization using POMDP-RC is compared with
several uniform quantizers in Table 5. The 1-bit or 2-bit uni-
form quantizer cannot capture sufficient class information,
and the 3-bit uniform quantizer wastes too much bandwidth
on unlikely or noninformative observations. POMDP-RC
achieves the highest accuracy and acquires more observa-
tions than 2-bit and 3-bit uniform quantizers with the same
bandwidth budget.

Ci |_ i
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s

Figure 5. Distributions of 1-D toy data from 3 classes (left),
with uniform quantizers (middle), and the non-uniform quantizers
learned by POMDP-RC (right).
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Figure 6. Reward function and test accuracy during the policy
learning for POMDP-DC on the MSTAR data set.

4.3. Evaluation of POMDP-DC

In the following, we focus on evaluating the recognition
performance of POMDP-DC with only the number of ob-
servations or features being constrained.

We first use the MSTAR data and train SVM classifiers
for each view. The classification margin reward in (10) is
optimized during policy learning for POMDP-DC, which is
plotted in Fig. 6 versus training time. It can be seen that
the reward value and classification accuracy on test data
both increase with the training reward, indicating (10) is an
effective objective for classification. The effect of margin
parameter J in (10) on test accuracy is studied in Fig. 7. It
is observed that a too small § leads to lower accuracy as it
cannot ensure sufficient safe margin between classes; while
a too large 0 may disrupt the goal of classification and has
poor performance. We set §=0.8 which gives the highest
accuracy.

In this experiment, we want to make observations from
3 actively selected views to achieve best recognition.
Different combinations of classifiers and view planning
methods are evaluated, with accuracies reported in Table
6. SVM classifiers trained for each view independently
achieve much higher accuracy than naive Bayesian clas-
sifiers. POMDP-DC can further improve over the static
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Figure 7. Test accuracy during the policy learning for POMDP-DC
with different values of margin J on the MSTAR data set.

Table 6. Recognition accuracies (%) on the MSTAR data with
different classification and view selection models.
classifier view selection acc

single view average | 49.89
naive static views 2+6+7 | 81.00
Bayesian Infor [5] | 89.93
POMDRP [2] | 92.21

single view average | 52.51
static views 2+6+7 | 89.86
SVM POMDP-DC | 93.86
static views 2+6+7 | 90.07
POMDP-DC | 94.29
SVM [l pOMDP-DC-MO | 95.57

single-view

multi-view

selection of top 3 views (2+6+7) with the best single-view
performances, and also outperforms baseline methods Infor
[5] and POMDP [2]. We also train SVMs in the concate-
nated feature space of each pair of views to model between-
view high-order statistics, which are referred to as multi-
view SVMs. Correspondingly, meta-observations collect-
ing features from two views at once are added to POMDP-
DC, and the resulting model is denoted as POMDP-DC-
MO. As can be seen from the bottom rows in Table 6,
both SVM classifier and POMDP-DC-MO view planner
can benefit from the high-order information between views,
leading to a much improved recognition rate than baseline
approaches.

For a better understanding of the behavior of POMDP-
DC-MO, we conduct another experiment in which a total
number of 6 features, i.e. PCA dimensions, can be selected
from the first view of MSTAR data. In each observation
made by POMDP-DC-MO, up to 3 features can be collected
as a meta-observation. Baseline POMDP-DC approaches
collecting a fixed number of (1 and 3) features in each
observation are used for comparison. Fig. 8 shows how
the average recognition accuracy for each method increases
with the number of features obtained. The single-feature
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Figure 8. Recognition accuracies on the MSTAR data with differ-
ent meta-observation selection methods.
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Figure 9. Recognition accuracies on the Multi-Pie data under
different poses using naive Bayesian and SVM.

observation allows the most flexible sensing strategy which
is adapted upon each feature observed, but it falsely as-
sumes independence between all the features. On the other
hand, the meta-observation with 3 features can model the
high-order feature correlation, but it limits the number of
opportunities to actively adjust sensing options. POMDP-
DC-MO makes a tradeoff between the two and achieves the
highest accuracy after observing all the 6 features. Note that
the performance of POMDP-DC-MO is not the best before
all the features are observed, which indicates our policy
is optimized for a long-term goal instead of an immediate
goal.

POMDP-DC is also tested on the Multi-Pie data, where
we are restricted to select 3 poses for face recognition. The
performance of SVM and naive Bayesian classifiers on each
single pose are compared in Fig. 9. On this data set, the
accuracies under different views vary a lot; nevertheless,
SVM is consistently better than naive Bayesian classifier.
Table 7 also confirms the advantage of SVM classifier, and
shows that POMDP-DC can further improve over static
selection of the 3 best single views (6+7+8). We also try to



Table 7. Recognition accuracies (%) on the Multi-Pie data with
different classification and view selection models.
classifier view selection acc

) static views 6+7+8 | 89.53
naive Infor [5] | 91.09
Bayesian POMDP [2] | 90.31
static views 6+7+8 | 95.35
POMDP-DC | 96.24
SVM || pOMDP-DC w/ DiscObs | 96.94

multi-view SVM POMDP-DC-MO | 97.33

single-view

improve the discriminative power of our observation model
by defining O(s’, a, 0)ox exp{sa ./ o (0) }, Where 57 5+ 4(0)
is the SVM score function. The resulting discriminative
observation model brings a 0.7% improvement in accuracy
compared with the generative one, as shown in the row
for “POMDP-DC w/ DiscObs” in Table 7. Moreover,
as in the previous experiment on MSTAR, POMDP-DC
is configured with multi-view SVM and meta-observation
on pairs of views, and the highest accuracy of 97.33% is
obtained in this setting. By examining the views selected by
POMDP-DC, we find that almost 40% of the time the view
combination of 2+3+7 or 2+7+8 is selected, which suggests
that some side-view poses can provide complimentary in-
formation to the most discriminative frontal view poses.

5. Conclusions

We present a novel POMDP model for active object
recognition under limited motion and sensing resources
with two key components introduced. First, heterogeneous
resource constraints are explicitly monitored in the state
variable rather than indirectly penalized in the reward func-
tion, leading to a new reward function with more focus on
long-term recognition performance. Second, discriminative
classifiers with high-order class information are incorpo-
rated in place of conventional generative classifiers, and
the reward function and observation model are customized
accordingly. The proposed model proves to be effective in
terms of both recognition accuracy and resource manage-
ment in multi-view/multi-modality/multi-quantizer active
sensing tasks for vehicle classification and face recognition.

In future, we are interested in extending the model for a
wider range of pattern recognition problems in dynamic and
interactive environments.
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