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ABSTRACT

Latent semantic models, such as LSA, intend to angpery to its
relevant documents at the semantic level where &aybased
matching often fails. In this study we strive tovelep a series of
new latent semantic models with a deep structuat phoject
queries and documents into a common low-dimensiepakce
where the relevance of a document given a queryeaslily

computed as the distance between them. The propdsep
structured semantic models are discriminativelyinga by

maximizing the conditional likelihood of the cliagkedocuments
given a query using the clickthrough data. To make models
applicable to large-scale Web search applicatim@salso use a
technique called word hashing, which is shown tfeatfvely

scale up our semantic models to handle large vdaabs which

are common in such tasks. The new models are eedlin a
Web document ranking task using a real-world data Results
show that our best model significantly outperforatker latent
semantic models, which were considered state-e&thén the

performance prior to the work presented in thisgpap

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrievall.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Deep Learning, Semantic Model, Clickthrough Dat&b/$earch

1. INTRODUCTION

Modern search engines retrieve Web documents médiyly
matching keywords in documents with those in seaycéries.
However, lexical matching can be inaccurate duthedfact that a
concept is often expressed using different vocatedaand
language styles in documents and queries.

Latent semantic models such as latent semanticysisal
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(LSA) are able to map a query to its relevant dozois at the
semantic level where lexical matching often failg.g(,
[6][15][2][8][21]). These latent semantic models daglss the
language discrepancy between Web documents anthsgaeries
by grouping different terms that occur in a simantext into the
same semantic cluster. Thus, a query and a docunegnésented
as two vectors in the lower-dimensional semantacspcan still
have a high similarity score even if they do naarshany term.
Extending from LSA, probabilistic topic models sudis
probabilistic LSA (PLSA) and Latent Dirichlet Allation (LDA)
have also been proposed for semantic matchingZJL9ffowever,
these models are often trained in an unsupervisether using an
objective function that is only loosely coupled wthe evaluation
metric for the retrieval task. Thus the performarafethese
models on Web search tasks is not as good as alliggxpected.

Recently, two lines of research have been conduotestend
the aforementioned latent semantic models, whidhbei briefly
reviewed below.

First, clickthrough data, which consists of a t§iqueries and
their clicked documents, is exploited for semantimdeling so as
to bridge the language discrepancy between searehieg and
Web documents [9][10]. For example, Gao et al. [d@pose the
use of Bi-Lingual Topic Models (BLTMs) and linear
Discriminative Projection Models (DPMs) for quergediment
matching at the semantic level. These models ame on
clickthrough data using objectives that tailor tee tdocument
ranking task. More specifically, BLTM is a genevati model
which requires that a query and its clicked documerot only
share the same distribution over topics, but alsatain similar
factions of words assigned to each topic. In cattrlne DPM is
learned using the S2Net algorithm [26] that follotie pairwise
learning-to-rank paradigm outlined in [3]. Aftergpecting term
vectors of queries and documents into concept &dtoa low-
dimensional semantic space, the concept vectotiseofjuery and
its clicked documents have a smaller distance than of the
query and its unclicked documents. Gao et al. {&pprt that both
BLTM and DPM outperform significantly the unsupessf latent
semantic models, including LSA and PLSA, in the went
ranking task. However, the training of BLTM, thouglsing
clickthrough data, is to maximize a log-likelihoodterion which
is sub-optimal for the evaluation metric for documneanking. On
the other hand, the training of DPM involves laggale matrix
multiplications. The sizes of these matrices oftgaw quickly
with the vocabulary size, which could be of an omfemillions in
Web search tasks. In order to make the training timerable, the
vocabulary was pruned aggressively. Although a lsmaaabulary
makes the models trainable, it leads to suboptoaegbrmance.

In the second line of research, Salakhutdinov amatoH
extended the semantic modeling using deep autodensd22].



They demonstrated that hierarchical semantic stractmbedded
in the query and the document can be extractedegp learning.
Superior performance to the conventional LSA isortgn [22].
However, the deep learning approach they used atifipts an
unsupervised learning method where the model paeameare
optimized for the reconstruction of the documenther than for
differentiating the relevant documents from thelgvant ones for
a given query. As a result, the deep learning n®odi not
significantly outperform the baseline retrieval ratsdbased on
keyword matching. Moreover, the semantic hashinglehalso
faces the scalability challenge regarding largéescmatrix
multiplication. We will show in this paper that tlvapability of
learning semantic models with large vocabulariegrigcial to
obtain good results in real-world Web search tasks.

In this study, extending from both research linéscussed
above, we propose a series of Deep Structured SienMadels
(DSSM) for Web search. More specifically, our bestdel uses a
deep neural network (DNN) to rank a set of docusémt a given
query as follows. First, a non-linear projectionpisrformed to
map the query and the documents to a common SsesTsrHLCe.
Then, the relevance of each document given the yquer
calculated as the cosine similarity between theictors in that
semantic space. The neural network models areimisatively
trained using the clickthrough data such that tladdional
likelihood of the clicked document given the querynaximized.
Different from the previous latent semantic modétat are
learned in an unsupervised fashion, our modelsoatémized
directly for Web document ranking, and thus givepesior
performance, as we will show shortly. Furthermdoedeal with
large vocabularies, we propose the so-calledrd hashing
method, through which the high-dimensional term teex of
queries or documents are projected to low-dimemgidetter
based n-gram vectors with little information loss. In our
experiments, we show that, by adding this extraerapf
representation in semantic models, word hashindglesaus to
learn discriminatively the semantic models with ghr
vocabularies, which are essential for Web search. etaluated
the proposed DSSMs on a Web document ranking tasigla
real-world data set. The results show that our hesdel
outperforms all the competing methods with a sigaift margin
of 2.5-4.3% in NDCG@1.

In the rest of the paper, Section 2 reviews relatexk.
Section 3 describes our DSSM for Web search. Sedtipresents
the experiments, and Section 5 concludes the paper.

2. RELATED WORK

Our work is based on two recent extensions todtent semantic
models for IR. The first is the exploration of ttieekthrough data
for learning latent semantic models in a supervisathion [10].
The second is the introduction of deep learninghods for
semantic modeling [22].

2.1 Latent Semantic Modes and the Use of
Clickthrough Data

The use of latent semantic models for query-docametching
is a long-standing research topic in the IR comyurPopular
models can be grouped into two categories, lingajeption
models and generative topic models, which we wiliew in turn.
The most well-known linear projection model for IRLSA
[6]. By using the singular value decomposition (SVDf a
document-term matrix, a document (or a query) eaambapped to

a low-dimensional concept vectbr= ATD, where theA is the
projection matrix. In document search, the releearscore
between a query and a document, represented regbgbly term
vectorsQ andD, is assumed to be proportional to their cosine
similarity score of the corresponding concept vt andD,
according to the projection matri
Are
simy (Q,D) = & (1)
QI

In addition to latent semantic models, the tramstatnodels
trained on clicked query-document pairs provideatternative
approach to semantic matching [9]. Unlike latembaetic models,
the translation-based approach learns translat@ationships
directly between a term in a document and a terma iquery.
Recent studies show that given large amounts ciftbliiough data
for training, this approach can be very effecti9g10]. We will
also compare our approach with translation models
experimentally as reported in Section 4.

2.2 Deep Learning

Recently, deep learning methods have been suctgsafiplied
to a variety of language and information retrieagplications
[1][4][71[13][18][19][22][23][25]- By exploiting desp
architectures, deep learning techniques are abtbstmver from
training data the hidden structures and featurebfi@rent levels
of abstractions useful for the tasks. In [22] Shigkinov and
Hinton extended the LSA model by using a deep netwauto-
encoder) to discover the hierarchical semantictire embedded
in the query and the document. They proposed argénfsshing
(SH) method which uses bottleneck features learfinech the
deep auto-encoder for information retrieval. Thdsep models
are learned in two stages. First, a stack of gémermodels (i.e.,
the restricted Boltzmann machine) are learned t@ materm
vector representation of a document layer-by-lafera low-
dimensional semantic concept vector. Second, thedemo
parameters are fine-tuned so as to minimize thescemtropy
error between the original term vector of the doentmand the
reconstructed term vector. The intermediate laytivaions are
used as features (i.e., bottleneck) for documenking. Their
evaluation shows that the SH approach achieves perisu
document retrieval performance to the LSA. Howe@a, suffers
from two problems, and cannot outperform the steshdexical
matching based retrieval model (e.g., cosine siitylaising TF-
IDF term weighting). The first problem is that theodel
parameters are optimized for the reconstructiothefdocument
term vectors rather than for differentiating theevant documents
from the irrelevant ones for a given query. Secdndorder to
make the computational cost manageable, the temtonge of
documents consist of only the most-frequent 200@daoln the
next section, we will show our solutions to these problems.

3. DEEP STRUCTURED SEMANTIC
MODELSFOR WEB SEARCH

3.1 DNN for Computing Semantic Features

The typical DNN architecture we have developednfiapping the
raw text features into the features in a semapiéces is shown in
Fig. 1. The input (raw text features) to the DNNaishigh-
dimensional term vector, e.g., raw counts of teiima query or a
document without normalization, and the outputhe DNN is a
concept vector in a low-dimensional semantic faatpace. This
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Figure 1: lllustration of theDSSM. It uses a DNN to map high-dimensional spsefeatures into low-dimensional dense featunes $emantic space. The
first hidden layer, with 30k units, accomplishesdvbashing. The word-hashed features are thengteai¢hrough multiple layers of non-linear projens.
The final layer’s neural activities in this DNN forthe feature in the semantic space.

DNN model is used for Web document ranking as fedlol) to
map term vectors to their corresponding semanticept vectors;
2) to compute the relevance score between a doduerah a
query as cosine similarity of their correspondieghantic concept
vectors; rf. Eq. (3) to (5).

More formally, if we denote as the input term vectoy,as
the output vector;, i =1,...,N — 1, as the intermediate hidden
layers,W; as thei-th weight matrix, and; as the-th bias term,
we have

I, =Wpx
li = f(VVili—l + bi),i = 2, ,N -1
y=fWyly_1 + by)

where we use theinh as the activation function at the output
layer and the hidden layelsi = 2, ..., N — 1:

1-— —2X
1) = “

The semantic relevance score between a q@emyd a document
D is then measured as:

R(Q, D) = cosine(y,, yp) =

©)

YQT}’D
TENTITEA) (5)
lyellllyoll

wherey, andy, are the concept vectors of the query and the
document, respectively. In Web search, given thenguthe
documents are sorted by their semantic relevararesc
Conventionally, the size of the term vector, whicén be
viewed as the raw bag-of-words features in IRdéntical to that
of the vocabulary that is used for indexing the Wielzument
collection. The vocabulary size is usually verygkain real-world
Web search tasks. Therefore, when using term vasttine input,
the size of the input layer of the neural networbuld be
unmanageable for inference and model training. ddress this
problem, we have developed a method called “woshing” for
the first layer of the DNN, as indicated in the @wportion of
Figure 1. This layer consists of only linear hidderits in which
the weight matrix of a very large size is not leatnin the
following section, we describe the word hashingtrodtin detail.

3.2 Word Hashing

The word hashing method described here aims toceedbe
dimensionality of the bag-of-words term vectorsisltbased on
letter n-gram, and is a new method developed especiallyptor
task. Given a word (e.good, we first add word starting and
ending marks to the word (e#good#. Then, we break the word
into letter n-grams (e.g. letter trigramstgo, goo, ood, od#.
Finally, the word is represented using a vectdettérn-grams.

One problem of this method wllision, i.e., two different
words could have the same lettegram vector representation.
Table 1 shows some statistics of word hashing om tw
vocabularies. Compared with the original size oé tne-hot
vector, word hashing allows us to represent a qaegydocument
using a vector with much lower dimensionality. Take 40K-
word vocabulary as an example. Each word can lresepted by
a 10,306-dimentional vector using letter trigramising a four-
fold dimensionality reduction with few collision¥he reduction
of dimensionality is even more significant when theehnique is
applied to a larger vocabulary. As shown in Tabledch word in
the 500K-word vocabulary can be represented by #230
dimensional vector using letter trigrams, a reductf 16-fold in
dimensionality with a negligible collision rate d.0044%
(22/500,000).

While the number of English words can be unlimitéiig
number of letten-grams in English (or other similar languages) is
often limited. Moreover, word hashing is able to pmthe
morphological variations of the same word to th@nfgothat are
close to each other in the leti@igram space. More importantly,
while a word unseen in the training set always eauwdfficulties
in word-based representations, it is not the cdserevthe letten-
gram based representation is used. The only riskha@sminor
representation collision as quantified in TableThus, letter n-
gram based word hashing is robust to the out-o&balary
problem, allowing us to scale up the DNN solutiontte Web
search tasks where extremely large vocabulariedesieable. We
will demonstrate the benefit of the technique ot 4.

In our implementation, the lettergram based word hashing
can be viewed as a fixed (i.e., non-adaptive) litemsformation,



through which an term vector in the input layepisjected to a
letter n-gram vector in the next layer higher up, as shawn
Figure 1. Since the lettem-gram vector is of a much lower
dimensionality, DNN learning can be carried oueefively.

L etter-Bigram Letter-Trigram
Word Token Coallision Token Coallision
Size Size Size
40k 1107 18 10306 2
500k 1607 1192 30621 22

Table 1: Word hashing token size and collision numbers as a

function of the vocabulary size and the type dtlehgrams.

3.3 Learning the DSSM

The clickthrough logs consist of a list of queréewsl their clicked
documents. We assume that a query is relevangéaat partially,
to the documents that are clicked on for that quespired by the
discriminative training approaches in speech andguage
processing, we thus propose a supervised traingtgod to learn

our model parameters, i.e., the weight matridgsand bias

vectorsh; in our neural network as the essential part of the

DSSM, so as to maximize the conditional likelihaddhe clicked
documents given the queries.

First, we compute the posterior probability of acdment
given a query from the semantic relevance scorevdmt them
through a softmax function

exp(yR(Q, D)) ]
Ybrep eXp(yR(Q, D’)) (©)

wherey is a smoothing factor in the softmax function, ethis
set empirically on a held-out data set in our eixpent. D denotes
the set of candidate documents to be ranked. iddalshould
contain all possible documents. In practice, fochedquery,
clicked-document) pair, denoted 6@, D*) whereQ is a query
andD* is the clicked document, we approximéeby including
D* and four randomly selected unclicked documentsotie by
{D;j;j=1,..,4}. In our pilot study, we do not observe any
significant difference when different sampling &tges were
used to select the unclicked documents.

In training, the model parameters are estimatethagimize
the likelihood of the clicked documents given theees across
the training set. Equivalently, we need to minimilze following
loss function

L(A) = —log

P(DIQ) =

P(D*1Q)
((l:l') %

whereA denotes the parameter set of the neural netwarkd;}.
SinceL(A) is differentiable w.r.t. t@, the model is trained readily
using gradient-based numerical optimization alpong. The
detailed derivation is omitted due to the spacédition.

3.4 Implementation Details

To determine the training parameters and to avea-6tting, we

divided the clickthrough data into two sets thatrdm overlap,
called training and validation datasets, respeltivén our

experiments, the models are trained on the traiseigand the
training parameters are optimized on the validatiataset. For
the DNN experiments, we used the architecture thitee hidden
layers as shown in Figure 1. The first hidden lagethe word

hashing layer containing about 30k nodes (e.g.,sibhe of the
letter-trigrams as shown in Table 1). The next hidden layers
have 300 hidden nodes each, and the output layel 28 nodes.
Word hashing is based on a fixed projection mairhe similarity
measure is based on the output layer with the ddioaality of
128. Following [20], we initialize the network wditg with
uniform distribution in the range
between—,/6/(fanin + fanout) and /6/(fanin + fanout)
where fanin and fanout are the number of input and output
units, respectively. Empirically, we have not olser better
performance by doing layer-wise pre-training. Ire ttraining
stage, we optimize the model using mini-batch basgedhastic
gradient descent (SGD). Each mini-batch consisia# training
samples. We observed that the DNN training usuatiyverges
within 20 epochs (passes) over the entire traidiig.

4. EXPERIMENTS

We evaluated the DSSM, proposed in Section 3, @n\iteb
document ranking task using a real-world datalsethis section,
we first describe the data set on which the modsdsevaluated.
Then, we compare the performances of our best magihst
other state of the art ranking models. We also dtigate the
break-down impact of the techniques proposed iti&e8.

4.1 Data Setsand Evaluation M ethodology

We have evaluated the retrieval models on a lacgkseal world
data set, called the evaluation data set hencefbhé evaluation
data set contains 16,510 English queries sampted fine-year
query log files of a commercial search engine. @erage, each
query is associated with 15 Web documents (URLaghEjuery-
title pair has a relevance label. The label is hugenerated and
is on a 5-level relevance scale, 0 to 4, wherel kveeans that the
document is the most relevant to qué@rand O mean® is not
relevant toQ. All the queries and documents are preprocessed
such that the text is white-space tokenized andefoased,
numbers are retained, and no stemming/inflectiggerformed.

All ranking models used in this study (i.e., DSSMpic
models, and linear projection models) contain maeg hyper-
parameters that must be estimated empiricallylllexgperiments,
we have used a 2-fold cross validation: A set stilts on one half
of the data is obtained using the parameter settipgimized on
the other half, and the global retrieval resules esmbined from
the two sets.

The performance of all ranking models we have eatall has
been measured by mean Normalized Discounted Cuineil@gain
(NDCG) [17], and we will report NDCG scores at tration
levels 1, 3, and 10 in this section. We have alsdopmed a
significance test using the paired t-test. Diffeeshare considered
statistically significant when thgvalue is less than 0.05.

In our experiments, we assume that a query is Ipatal the
titles of the documents clicked on for that quane extracted
large amounts of the query-title pairs for modalrting from one
year query log files using a procedure similar 1d][ Some
previous studies, e.g., [24][11], showed that thery click field,
when it is valid, is the most effective piece ofoimmation for
Web search, seconded by the title field. Howevedickc
information is unavailable for many URLs, espegialew URLs
and tail URLs, leaving their click fields invalid.€., the field is
either empty or unreliable because of sparsenésghis study,
we assume that each document contained in the ai@iudata
set is either a new URL or a tail URL, thus has dlizk




information (i.e., its click field is invalid). Ouesearch goal is to
investigate how to learn the latent semantic modeis the
popular URLs that have rich click information, aa@ply the
models to improve the retrieval of those tail owrléRLs. To this
end, in our experiments only the title fields o Web documents
are used for ranking. For training latent semamiaciels, we use a
randomly sampled subset of approximately 100 nmillipairs
whose documents are popular and have rich clickindtion. We
then test trained models in ranking the documemtsthe
evaluation data set containing no click informatidime query-
title pairs are pre-processed in the same wayeas\luation data
to ensure uniformity.

4.2 Results

The main results of our experiments are summariaetable 2,
where we compared our best version of the DSSM (Rywvith
three sets of baseline models. The first set oélbees includes a
couple of widely used lexical matching methods sashTF-IDF
(Row 1) and BM25 (Row 2). The second is a word dia@ion
model (WTM in Row 3) which is intended to directgdress the
query-document language discrepancy problem bynilegra
lexical mapping between query words and documentdsvo
[9][10Q]. The third includes a set of state-of-thédatent semantic
models which are learned either on documents onlyam
unsupervised manner (LSA, PLSA, DAE as in Rows 8)tor on
clickthrough data in a supervised way (BLTM-PR, DPa4& in
Rows 7 and 8). In order to make the results confparave re-
implement these models following the descriptiomg1i0], e.g.,
models of LSA and DPM are trained using a 40k-wardabulary
due to the model complexity constraint, and thesothodels are
trained using a 500K-word vocabulary. Details daeberated in
the following paragraphs.

TF-IDF (Row 1) is the baseline model, where both document

and queries are represented as term vectors wittDFFRerm
weighting. The documents are ranked by the cosimélasity
between the query and document vectors. We alsoBi25
(Row 2) ranking model as one of our baselines. BdtH DF and
BM25 are state-of-the-art document ranking models based
term matching. They have been widely used as Imeselin
related studies.

WTM (Rows 3) is our implementation of the word tratista
model described in [9], listed here for comparisd/e see that
WTM outperforms both baselines (TF-IDF and BM25)
significantly, confirming the conclusion reached [®]. LSA
(Row 4) is our implementation of latent semantialgsis model.
We used PCA instead of SVD to compute the lineajegtion
matrix. Queries and titles are treated as sepa@tements, the
pair information from the clickthrough data was msed in this
model. PLSA (Rows 5) is our implementation of the model
proposed in [15], and was trained on documents @y the title
side of the query-title pairs). Different from [15ur version of
PLSA was learned using MAP estimation as in [IDAE (Row
6) is our implementation of the deep auto-encodeset semantic
hashing model proposed by Salakhutdinov and Hintofi22].
Due to the model training complexity, the inputntevector is
based on a 40k-word vocabulary. The DAE architecttantains
four hidden layers, each of which has 300 nodes,aabottleneck
layer in the middle which has 128 nodes. The mad&hined on
documents only in an unsupervised manner. In the-tfining
stage, we used cross-entropy error as trainingri@itThe central
layer activations are used as features for the atatipn of cosine
similarity between query and document. Our resaésconsistent

with previous results reported in [22]. The DNN daslatent
semantic model outperforms the linear projectiondebo(e.g.,
LSA). However, both LSA and DAE are trained in an
unsupervised fashion on document collection ortiystcannot
outperform the state-of-the-art lexical matchingkiag models.

BLTM-PR (Rows 7) is the best performer among different
versions of the bilingual topic models describedlfl]. BLTM
with posterior regularization (BLTM-PR) is trained query-title
pairs using the EM algorithm with a constraint eniog the
paired query and title to have same fractions hseassigned to
each hidden topicDPM (Row 8) is the linear discriminative
projection model proposed in [10], where the prigecmatrix is
discriminatively learned using the S2Net algoritH@6] on
relevant and irrelevant pairs of queries and titisnilar to that
BLTM is an extension to PLSA, DPM can also be viéves an
extension of LSA, where the linear projection maisi learned in
a supervised manner using clickthrough data, opéthifor
document ranking. We see that using clickthrougdia éiar model
training leads to some significant improvement.BBLTM-PR
and DPM outperform the baseline models (TF-IDF BMP5).

Rows 9 to 12 present results of different settimgsthe
DSSM.DNN (Row 9 is a DSSM without using word hashing. It
uses the same structure as DARoW 6), but is trained in a
supervised fashion on the clickthrough data. Tipatiterm vector
is based on a 40k-word vocabulary, as used by DARVH
linear (Row 10 is the model built using letter trigram based avor
hashing and supervised training. It differs frora thWH non-
linear model Row 11) in that we do not apply any nonlinear
activation function, such danh to its output layerL-WH DNN
(Row 12)is our best DNN-based semantic model, which uses
three hidden layers, including the layer with thettér-trigram-
based Word Hashing (L-WH), and an output layer, asd
discriminatively trained on query-title pairs, a®sdribed in
Section 3. Although the lettergram based word hashing method
can be applied to arbitrarily large vocabularies, drder to
perform a fair comparison with other competing et the
model uses a 500K-word vocabulary.

The results in Table 2 show that the deep strudtaesnantic
model is the best performer, beating other methbgs a
statistically significant margin in NDCG and demtrang the
empirical effectiveness of using DNNs for semamiatching.

From the results in Table 2, it is also clear thapervised
learning on clickthrough data, coupled with an kric
optimization criterion tailoring to ranking, is esdial for
obtaining superior document ranking performance. &@ample,
both DNN and DAE (Row 9 and 6) use the same 40kdwor
vocabulary and adopt the same deep architecture. fdhmer
outperforms the latter by 3.2 points in NDCG@1.

Word hashing allows us to use very large vocabesafor
modeling. For instance, the models in Rows 12, ivhige a 500k-
word vocabulary (with word hashing), significantbytperform
the model in Row 9, which uses a 40k-word vocalyulaithough
the former has slightly fewer free parameters tthenlater since
the word hashing layer containing about only 30#e®

We also evaluated the impact of using a deep acthite
versus a shallow one in modeling semantic inforomémbedded
in a query and a document. Results in Table 2 stiaw DAE
(Row 3) is better than LSA (Row 2), while both L&Ad DAE
are unsupervised models. We also have observedhsirasults
when comparing the shallow vs. deep architecturthéncase of
supervised models. Comparing models in Rows 11 &fd
respectively, we observe that increasing the nuroberonlinear



layers from one to three raises the NDCG score8.40.5 point
which are statistically significant, while there m® significant
difference between linear and non-linear modelsoth are one-
layer shallow models (Row 10 vs. Row 11).

# | Models NDCG@1 NDCG@3| NDCG@10
1 |TF-IDF 0.319 0.382 0.462
2 |BM25 0.308 0.373 0.455
3 |WTM 0.332 0.400 0.478
4 |LSA 0.298 0.372 0.455
5 |PLSA 0.295 0.371 0.456
6 |DAE 0.310 0.377 0.459
7 |BLTM-PR 0.337 0.403 0.480
8 |DPM 0.329 0.401 0.479
9 |DNN 0.342 0.410 0.486
10 |L-WH linear 0.357 0.422 0.495
11 |L-WH non-linear 0.357 0.421 0.494
12 |L-WH DNN 0.362 0.425 0.498

Table 2. Comparative results with the previous state of dfte
approaches and various settings of DSSM.

5. CONCLUSIONS

We present and evaluate a series of new latentrgenmaodels,

notably those with deep architectures which we ttedl DSSM.

The main contribution lies in our significant ex¢én of the

previous latent semantic models (e.g., LSA) inehkey aspects.
First, we make use of the clickthrough data to roje the

parameters of all versions of the models by diyetzttgeting the
goal of document ranking. Second, inspired by teepdlearning
framework recently shown to be highly successfulsppeech
recognition [5][13][14][16][18], we extend the liae semantic
models to their nonlinear counterparts using midtipidden-

representation layers. The deep architectures eddyve further
enhanced the modeling capacity so that more saoqstistl

semantic structures in queries and documents caatered and
represented. Third, we use a letter n-gram based Wwashing

technique that proves instrumental in scaling @ptthining of the
deep models so that very large vocabularies carudsa in

realistic web search. In our experiments, we shioat the new
techniques pertaining to each of the above threpects lead to
significant performance improvement on the docunmamtking

task. A combination of all three sets of new teghes has led to
a new state-of-the-art semantic model that beath@lpreviously
developed competing models with a significant margi
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APPENDIX

I Gradient Computation and Gradient Descent

SinceL(A) is differentiable w.r.t. td\, the model is trained readily
using gradient-based numerical optimization algong. The
update rule is

OL(A)
Ay =7 g — ftT |A:At_1 (8)
wheree, is the learning rate at th&" iteration,A, andA,_, are
the models at the" and the(t — 1)t" iteration, respectively.

In what follows, we derive the gradient of the Idgaction
w.r.t. the parameters of the neural networks. Assgrthat there
are in totaR (query, clicked-document) pairs, we den@@e, D;")
as ther-th (query, clicked-document) pair. Then, if we d&n

L, (A) = —logP(D/1Q,) 9)
we have
AL(A) o OL () w0
A _r:1 oA

In the following, we will show the derivation gf#.

For a query) and a documem, we denotel; , andl;, be
the activation in the hidden laygrandy, andy, be the output
activation for Q and D, respectively. They are computed
according to Eq. (3).

We then derive% as follows'. For simplification, the

subscript of will be omitted hereafter.
First, the loss function in Eq. (9) can be written

L(A) = log (1 + Z,- exp(—y Aj)>

where A; = R(Q,D*) —R(Q,D;) . The gradient of the loss
function w.r.t. theN-th weight matrix#/y is

aL(A)_Z oA,
owy 2% 3wy

11)

(12)
where
: + O0R(Q,D;
04 _0R(Q,D) 9R(Q.D}) 13)
and
—vexp(—yA;
o v exp(—y4)) (14)

714X exp(—y )

To simplify the notation, let,b,c be yo"yp, 1/|voll
and1/|lypll , respectively. Witltanh as the activation function in
our model, each term in the right-hand side of @@) can be
calculated using the following formula:

1 We present only the derivation for the weight ficas. The
derivation for the bias vector is similar and isitveal.

9R(Q,D) 0

T

Yo Vb @Q.D);T @D);T

- =¢glePnr 4 slebhr (15)
Wy llyollllypll ~ ¥e N7h@ T Ty INTLD

where63(,g'D) and(S)(,g'D) for a pair of(Q, D) are computed as

8327 = (1-y4) o (1 +g) o (beyp — ach®yg)

16
8y = (1= yp) o (1 +yp)  (beyg — abc®yp) (o)
where the operatoro is
(Hadamard product).

For hidden layers, we also need to calcufaiefor eachp;.
For example, eaclh in the hidden layei can be calculated
through back propagation as

the element-wise multiplication

857 = (1+1i0) (1= Lig) o W/ 551

8507 = (1+1ip) o (1= 1) e WIS

(17)

and eventually we hawi%” = 6527 ands % = 57

Correspondingly, the gradient of the loss functiem.t. the
intermediate weight matri¥/;,i = 2, ..., N — 1, can be computed
ad

dL(A) B Z a4,
aw, ~ L.%aw, (18)
j
where
oA; + +
J _ (s@D")T @.pH),T
a—Wi - (61'.0 lis10+ 6i,D+ li—1,D+)
@Dj),r @Dj),r (29)
- (51',0 ’ li—l.Q + 51‘,0}7} li—l,D]-_)

Il. Analysis on Document Ranking Errors

In the test data, among 16,412 unique queries,onmepare each
query’s NDCG@1 values using TF-IDF and our best ehddtter
trigram based word hashing with supervised DNN (H'\®WNN).

There are in total 1,985 queries on which L-WH DN&tforms
better than TF-IDF (the sum of NDCG@1 difference4332.3).
On the other hand, TF-IDF outperforms L-WH DNN o@7I

queries (the sum of NDCG@1 differences is 630.6D). both

cases, we sample several concrete examples. Theghawn in
Tables 5 and 6, respectively. We observe in Tablinch the
NDCG improvement is largely to the better matchwaen

queries and titles in the semantic level than eléxical level.

2 Note that¥; is the matrix of word hashing. It is fixed and dee
no training.



L-WH DNN wins over TF-IDF

interesting to see that words with the same orntedl@emantic

Query Title meanings do stay in the same cluster.
1 bfpo postcodes in the united
kingdom wikipedia the
free encyclopedia L-WH DNN loses to TF-IDF _
2 univ of penn university of Query Title _
pennsylvania wikipedia 1 hey arnold hey arnold the movie
the free encyclopedia 2 internet by dell dell hyperconnect mobile
3 citibank citi com internet solutions dell
4 ccra canada revenue agency 3 www mcdonalds com mcdonald s’
website 4 mt m t bank
5 search galleries photography community 5 board of directors board of directors west s
including forums reviews encyclopedia of american
and galleries from photo law full ariticle from
net answers com
6 met art metropolitan museum of 6 puppet skits skits
art wikipedia the free 7 montreal canada attractions go montreal tourist
encyclopedia information
7 new york brides long island bride and 8 how to address a cover letter how to write a cove
groom wedding letter
magazine website 9 bbc television bbc academy
8 motocycle loans auto financing is easy 10 rock com rock music information
with the capital one from answers com
blank check Table 6: Examples that our deep semantic model performs
9 boat new and used yarts for worse than TF-IDF.
sale yachartworld com
10 bbc games b b sport automotive | chevrolet youtube bear systems
Table 5. Examples that our deep semantic model performs i qels fuel videos hunting protect
better than TF-IDF. cars motorcycle dvd texas platform
auto toyota downloads colorado efficiency
To make our method more intuitive, we have alswialized E:Li cle E:‘;gcycles Tgwe TS::;:] Zigsemﬁz

the learned hidden representations of the wordsdargueries and
documents. We do so by treating each word as aiardgcument
and passing it as an input to the trained DNN. &theoutput
node, we group all the words with high activatiavdls and
cluster them accordingly. Table 7 shows some exarojisters,
each corresponding to an output node of the DNNahdd is

Table 7: Examples of the clustered words on five differeatput
nodes of the trained DNN. The clustering critericn high
activation levels at the output nodes of the DNN.



